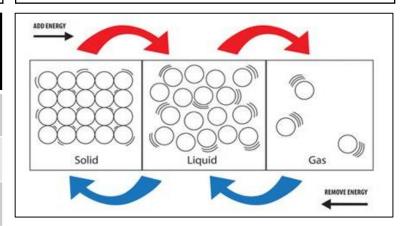
Be REFLECTIVE: Review your learning

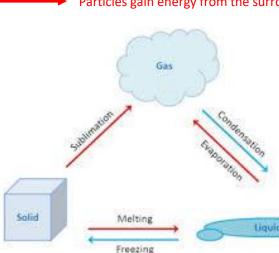
KNOWLEDGE ORGANISER

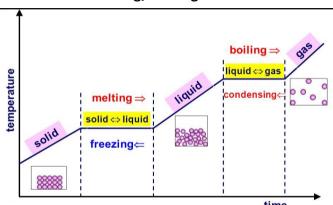

CHEMISTRY: Matter

Name:

Properties of States of Matter

State	Can you compress (squash) the substance in this state?	Does the substance flow ?	Shape
Solid	No	No	Fixed, unless you apply a force
Liquid	No	Yes	Takes the shape of the bottom of its container
Gas	Yes	Yes	Takes the shape of the whole container


States of Matter


Changes in the States of Matter

Particles lose energy to the surroundings

Particles gain energy from the surroundings

Heating/Cooling Curves

Sharp/ distinct melting and boiling points can be used to identify *pure* substances.

If these points are not sharp then a substance must be impure (mixture of substances).

The Particle Model

Advantage

 Explains properties of particles.

Disadvantage

- Assumes all particles (of different elements) are the same size
- Assure all particles are the same distance apart

Be REFLECTIVE: Review your learning

KNOWLEDGE ORGANISER

CHEMISTRY: Matter

Name:

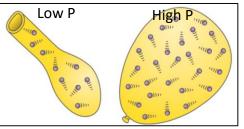
Diffusion

Gas Pressure

Gas ONLY

The pressure created by gas particles colliding with the side of a container.

Factors that affect pressure include:


1. Number of particles

Low P

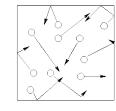
Smaller volume

- More crowded particles
- More collisions with surface
- Higher Gas Pressure (P)

More particles

Cool gas, fewer and less

energetic collisions


- More crowded particles
- More collisions with surface
- Higher Gas Pressure (P)

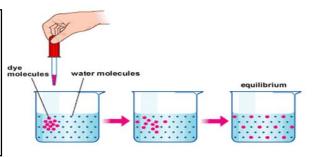
2. Temperature

Cooling Down

Heating Up

Hot gas, more and more energetic collision

Gas and Liquid


The random moving and mixing of particles from a high to low concentration.

Factors that affect pressure include:

Experiment:

Diffusion of a dye in water

Factors	Effect	Reason
1. Temperature	↑Temperature ↑ Rate of diffusion	More Energy for Particles. More Particles move faster.
2. Particle Size	↑Particle Size ↓Rate of diffusion	More heavy/big particle. Particles move slower.
3. State of Particle	Liquids ↓Rate of diffusion Gases ↑Rate of diffusion	Gas particles are further apart and have more energy. More Particles move faster.