Section 1: Key terms

Displacement The distance an object moves in a given direction. A
Displacement vector quantity.

Velocity	The speed of an object in a given direction. A vector.

Acceleration The change of an object's velocity per second.
Deceleration A negative acceleration, the object is slowing down.
Gradient Change in quantity on the y-axis divided by change in quantity on the x -axis.

Section 2: Distance-time graphs

A distance-time graph shows the distance of an object from a starting point (plotted on y-axis) against the time taken (plotted on the x axis.)
Constant speed - straight line
that slopes upwards.
Accelerating - curved line getting steeper.
Decelerating - curved line getting less steep. Stationary - horizontal line the gradient is zero The gradient represents the object's speed \qquad The steeper the gradient, the greater the speed.
Slopes of distance-time graphs

Section 3: Velocity-time graphs

A velocity-time graph shows the velocity of an object (plotted on y-axis) against the time taken (plotted on the x-axis.) A motion sensor linked to a computer can be used to measure velocity changes.
Constant velocity (zero
acceleration)- horizontal line Constant acceleration straight line with velocity increasing
Constant deceleration
straight line with velocity decreasing
Stationary - horizontal line on x-axis (velocity $=0$) Moving backwards - below x-axis
The steeper the gradient the greater the acceleration.

A positive gradient represents acceleration, a negative gradient represents deceleration.
Area under the graph represents distance travelled (HT)

Slopes of velocity-time graphs

Section 4: Equations to learn

Distance $=$ speed x time

Distance - metres (m)
s = v x t
Speed meters per
speed - meters per second (m/s) Time - seconds (s)

Acceleration = change in velocity \mid Acceleration - metres per second ($\mathrm{m} / \mathrm{s}^{2}$) time taken	Change in velocity - meters per second $(\mathrm{m} / \mathrm{s})$

Section 5: Calculating the gradient (HT)
The distance-time graph for an object moving a changing speed is a curve. To find the speed a a particular instant in time, draw a tangent to the ine at that instant and determine the gradient of the tangent.

Calculating the gradient:

$$
\text { slope }=\frac{\Delta y}{\Delta x}
$$

or

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

