KNOWLEDGE

Chemistry Topic 8 Rates and equilibrium

ORGANISER

Section 1: Rate of reaction Key terms						
Rate of reaction		Tells you how fast reactants turn into products				
Collision theory		Reactions can only take place when particles collide with enough energy.				
Activation energy		The minimum amount of energy particles need in order to react .				
Catalyst		A chemical (or enzyme) that increases the rate of reaction without being used up itself . They provide an alternative pathway for the reaction with a lower activation energy .				
Concentration		The number of particles in a certain volume.				
Surface area		The surface area of a solid is a measure of the total area that the surface of the solid occupies .				
Pressure		The pressure of a gas is the force that the gas exerts on the walls of the container .				
 Section 2: How can you find out the rate of reaction There are two ways you can work out the rate of a chemic reaction. You can find out how quickly: The reactants are used up The products are made There are three techniques that can be used: 			Section 3: Calculating rate of reaction Mean rate = <u>quantity of reactant used</u> or time or Mean rate = <u>quantity of product formed</u> of reaction Item rate = <u>quantity of reactant used</u> of reaction or time Typical graph when measuring reactants used Typical graph when measuring products formed			
1. Measuring the increasing volume of a gas given off.	Delivery tube Hydrochloric acid	carbon dioxide gas Water tub m carbonate Water	Reaction Reaction Reaction stopped Reaction fastest Reaction fastest			
2. Measuring the decreasing mass of a reactant mixture.	Cotton wool – Giller dilute marble dilute chips – Cotton acid	Section 4: Factor Factor Concentration of reactants Pressure of gases	Image: Time (s) Image: Time (s) Time (s) Time (s) Effect on Rate Explanation Increasing the concentration increases the frequency of a collision as particles are closer together. Increasing the pressure increases the rate of reaction Increases the frequency of a collision as particles are closer together.			
3. Disappearing cross method: measuring the decreasing light passing through a solution.	Conical flask Remi	e Surface area of solid reactants	Increasing the surface area increases the rate of reaction.Exposes more of the solid so that there is a greater frequency of collisions occurring.Increasing the temperature increases the rate of reaction.Particles collide more frequently and with more energy.Catalysts increase the rate of reaction.Lowers the activation energy by providing an alternate pathway.			

KNOWLEDGE

Chemistry Topic 8 Rates and equilibrium

ORGANISER

Section 4 (cont): How Catalysts work		Section 6: Altering conditions (HT)	
The reaction catalysed exc lowers the ac	n profile diagram of an uncatalysed and a othermic reaction is shown below. The catalyst trivation energy of the reaction.	Changing temperature (HT)	If the forward reaction is exothermic If the forward reaction is endothermic An increase in temperature shifts An increase in temperature shifts the equilibrium in the backwards the equilibrium in the forwards (endothermic) direction. Hence the amount of products decreases. A decrease in temperature shifts the equilibrium in the forwards A decrease in temperature shifts the equilibrium in the forwards the equilibrium in the backwards (exothermic) direction. Hence the amount of products increases. A decrease in temperature shifts the equilibrium in the forwards (exothermic) direction. Hence the amount of products increases.
	Progress of reaction	Changing	 If we increase the concentration of one of the reactants, Le Chatelier's principle says that the equilibrium will shift in the direction that tends to reduce the concentration of this reactant. A + B ⇒ C + D Increasing the concentration of reactant A, the only way the system can reduce the concentration of A is by some of A reacting with B. Hence the
Section 5: R	eversible Reactions key terrms		equilibrium moves in the forwards direction and more C & D are made.
Reversible reaction	versible action A reaction in which the products can also form the reactants. Its symbol is \Rightarrow Shown as: A + B \Rightarrow C + D		 If the concentration of a reactant is increased, the equilibrium shifts in the forwards direction to decrease the amount of reactant, hence
Exothermic	A reaction that transfers energy to the surroundings		 more products will be formed. If the concentration of a product is decreased, more products will be
Endothermic	A reaction that takes in energy from the surroundings	Changing pressure (HT)	formed. For reactions of gases :
Equilibrium (HT)	Equilibrium is reached when the forward and backwards reactions occur at exactly the same rate. The amounts of reactants and products present remain constant. Requires a sealed container.		 an increase in pressure causes the reaction to favour the side with the smaller number of molecules (as shown by the balanced symbol equation for that reaction). A decrease in pressure causes the reaction to favour the side with the larger number of molecules (as shown by the balanced symbol equation for that reaction). e.g. N₂O_{4(g)} ≓ 2NO_{2(g)} Decreasing the pressure in this reaction shifts the equilibrium to the side with the most gas molecules. Hence the equilibrium shifts in the forwards direction.
Le Chatelier's Principle (HT)	When a change in conditions is introduced to a system at equilibrium, the position of equilibrium shifts so as to cancel out the change.		