
KNOWLEDGE

Chemistry Topic 6 Electrolysis

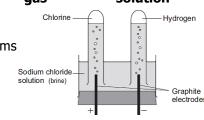
ORGANISER

Section 1 Electrolysis key terms		
Electrolysis	The process of splitting an ionic compound by passing electricity through it.	
Electrolyte	An ionic compound that is molten (melted) or dissolved in water . The electrolyte is broken down by electricity enabling its ions to and hence carry a charge. move freely	
Electrode	An electrical conductor that is placed in the electrolyte and connected to the power supply .	
Cathode	The negative electrode . The electrode attached to the negative terminal of the power supply.	
Anode	The positive electrode . The electrode attached to the positive terminal of the power supply.	
Oxidation	Loss of electrons	
Reduction	Gain of electrons	

Section 2a: Changes at the electrodes — Pure ionic compounds				
Electrolyte	Cathode	Anode		
Molten Compound	Metal	Non-metal produced.		
Molten lead bromide (diagram above)	Lead metal is produced Pb ²⁺ + 2e ⁻ → Pb	Bromine is produced $2Br^{-} \rightarrow Br_{2} + 2e^{-}$		

Section 2b: Changes at the electrodes — Aqueous solutions				
Electrolyte	Cathode	Anode		
Dissolved compound (aqueous	less reactive than hydrogen. Hydrogen is produced if the metal is more	Oxygen is produced unless the solution contains halide ions (chloride, bromide, iodide) when the halogen (chlorine, bromine, iodine) is produced.		

Electrolyte	Cathode	Anode
CuBr _{2(aq)}	Copper	Bromine
NaCl _(aq)	Hydrogen	Chlorine
KI _(aq)	Hydrogen	Iodine
Na ₂ SO _{4(aq)}	Hydrogen	Oxygen


Electrolysis of Brine (concentrated sodium chloride solution)

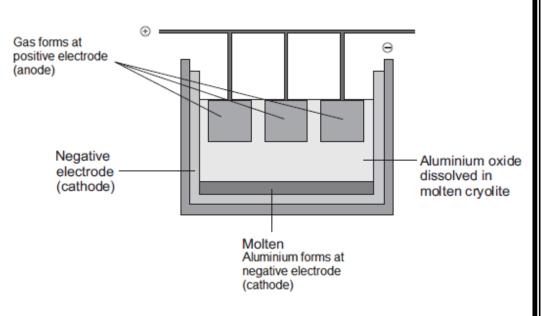
In the electrolysis of brine, three products are formed, hydrogen, chlorine and sodium hydroxide.

Sodium chloride → hydrogen + chlorine + sodium hydroxide solution gas gas solution

At the **cathode hydrogen** gas forms $2H^+ + 2e^- \rightarrow H_2$ (**reduction**)

At the **anode**, **chlorine** gas forms $2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$ (**Oxidation**)

Sodium ions stay in solution (as sodium is more reactive than hydrogen) and **combine with hydroxide ions** to form sodium hydroxide.


KNOWLEDGE

Chemistry Topic 6 Electrolysis

ORGANISER

Section 3a: The extraction of Aluminium by electrolysis		
Bauxite	You get aluminium oxide from the ore called Bauxite , the ore is mined by open cast mining .	
Cryolite	Aluminium oxide is dissolved in cryolite to lower its melting point. This saves money on energy costs.	
Graphite	The electrodes are made from graphite (carbon) as graphite can conduct electricity (due to it having delocalised electrons between it's layers.)	
Cathode	Positive Al ³⁺ ions move to the cathode. Aluminium is produced (reduction). Al ³⁺ + 3e ⁻ → Al	
Anode	Negative O ²⁻ ions move to the anode. Oxygen is made (oxidation). 2O ²⁻ → O ₂ + 4e ⁻ The anode wears away gradually as the carbon graphite anode reacts with oxygen to form carbon dioxide.	

Section 3b: Uses of Aluminium

Aluminium is a very important metal, the uses of its metal or alloys include:

- Pans
- Overhead power cables
- Aeroplanes
- Cooking foil
- Drink cans
- Window and patio door frames
- Bicycle frames and car bodies