

### Chemistry Topic 4 Chemical calculations

ORGANISER

| Section 1: Chemic                         | al calculations Key Terms                                                                                                                                                                                                                                                                | Section 2: Calculating relative formula mass (M <sub>r</sub> ) |                                                                                                                  |  |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Law of conservation<br>of mass            | No atoms are destroyed or created during a chemical reaction. The total mass of the products is the same as the total mass of the reactants. Some reactions appear to give a change in mass, but this is because a gas may have escaped from the reaction container.                     | Add up all the atomic masses in a formula.                     | e.g. $CO_2$ Mass of C = 12. Mass of oxygen<br>= 16.                                                              |  |  |  |  |
|                                           |                                                                                                                                                                                                                                                                                          | Section 3: Calculating moles and masses (HT)                   |                                                                                                                  |  |  |  |  |
| Relative atomic<br>mass ( <i>A</i> ,)     | The average mass of an atom of an element compared to Carbon-12.                                                                                                                                                                                                                         |                                                                | sulfuric acid H <sub>2</sub> SO <sub>4</sub> ?                                                                   |  |  |  |  |
| Relative formula<br>mass ( <i>M</i> r)    | The <b>sum</b> of <b>all the atomic masses</b> of the atoms<br>in a <b>formula</b> of a substance (e.g. CO <sub>2</sub> ).                                                                                                                                                               | Number of moles = mass (g)                                     | Number of moles = $\frac{9.8}{98}$ = 0.1 moles2) What is the mass of 2.5 moles of<br>Carbon dioxide?             |  |  |  |  |
| Uncertainty                               | The <b>interval</b> within which the <b>true value</b> can be <b>expected to lie</b> . E.g. $25^{\circ}C \pm 2^{\circ}C$ – the true value lies between $23^{\circ}C$ and $27^{\circ}C$ .                                                                                                 | Mr                                                             |                                                                                                                  |  |  |  |  |
| Mole (HT)                                 | A measurement for the amount of a chemical. It is<br>the amount of substance in the relative atomic or<br>formula mass of a substance in grams. The <b>mass</b><br>(in grams) of <b>6.02 x <math>10^{23}</math></b> (the Avogadro constant)<br><b>atoms of an element</b> . Symbol: mol. |                                                                | Mass = 2.5 x 44 = 88g                                                                                            |  |  |  |  |
|                                           |                                                                                                                                                                                                                                                                                          | Section 4: Equations and calcula                               | ations (HT) 1) What masses of reactants and products                                                             |  |  |  |  |
| Balanced equation<br>(HT)                 | Balanced symbol equations show <b>the number of</b><br><b>moles that react</b> .<br>e.g. Ca + 2HCl $\rightarrow$ CaCl <sub>2</sub> + H <sub>2</sub>                                                                                                                                      |                                                                | are involved in the balanced symbol equation $H_2 + Cl_2 \rightarrow 2HCl$                                       |  |  |  |  |
|                                           | Shows one mole of Calcium reacting with two moles of hydrochloric acid to form one mole of Calcium chloride and one mole of hydrogen.                                                                                                                                                    |                                                                | Reactants: (2x1) + (2x35.5) = 73<br>Products: 2 x 36.5 = 73                                                      |  |  |  |  |
| Limiting reactant<br>(HT)                 | The <b>reactant</b> that <b>gets used up first</b> in a chemical reaction. It <b>limits the amount of product</b> formed.                                                                                                                                                                | Number of moles = $\frac{\text{mass } (g)}{M_r}$               | 2) What mass of oxygen will react with<br>72.0g of magnesium?<br>2Mg + $O_2 \rightarrow 2MgO$                    |  |  |  |  |
| Excess reactant<br>(HT)                   | The reactant that is <b>not completely used up</b> in a chemical reaction. There is some reactant left at the end.                                                                                                                                                                       |                                                                | Moles Mg = $72/12 = 3$ moles<br>Molar ratio Mg:O <sub>2</sub> is 2:1<br>Moles O <sub>2</sub> = $3/2 = 1.5$ moles |  |  |  |  |
| Concentration                             | A measure of the <b>number of particles</b> of a chemical in a <b>volume</b> . Can be measured in <b>g/dm<sup>3</sup></b> .                                                                                                                                                              |                                                                | Mass $O_2 = 3/2 = 1.5$ moles<br>Mass $O_2 = 1.5 \times 32 = 48g$                                                 |  |  |  |  |
| Decimetre <sup>3</sup> (dm <sup>3</sup> ) | A measurement of volume. Contains 1000cm <sup>3</sup> .                                                                                                                                                                                                                                  |                                                                |                                                                                                                  |  |  |  |  |



# Chemistry Topic 4 Chemical calculations

| Saction E: From massas to ba                                                                                                                                                                                                                                                                                                                                           | lancod oquations (HT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section 7: Expressing concentrations (in $a/dm^3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of moles = mass (g)<br>Mr                                                                                                                                                                                                                                                                                                                                       | 1) 8.08g of Potassium nitrate KN0<br>decomposed on heating to form 6<br>potassium nitrite KNO <sub>2</sub> and 1.2<br>oxygen.<br>a) Calculate the number of moles<br>KNO <sub>3</sub> , KNO <sub>2</sub> and O <sub>2</sub> and hence<br>Moles KNO <sub>3</sub> = 8.08/101 = 0.08<br>Moles KNO <sub>2</sub> = 6.8/85 = 0.08<br>Moles O <sub>2</sub> = 1.28/32 = 0.04<br>b) Use your answers to a) to work<br>the simplest whole number rat<br>these values and use this to w<br>balanced equation for the reac<br>Moles KNO <sub>3</sub> : KNO <sub>2</sub> : O <sub>2</sub><br>0.08 : 0.08 : 0.04<br>2 : 2 : 1<br>Hence equation is<br>2KNO <sub>3</sub> $\rightarrow$ 2KNO <sub>2</sub> + O <sub>2</sub> | O3 was       If you are working in decimetres cubed (dm <sup>3</sup> )         6.8g of       Concentration (g/dm <sup>3</sup> ) = mass of solute (g) volume (dm <sup>3</sup> )         8       If you are working in centimetres cubed (cm <sup>3</sup> )         8       Concentration (g/dm <sup>3</sup> ) = mass of solute (g) x 1000 volume (cm <sup>3</sup> )         8       Concentration (g/dm <sup>3</sup> ) = mass of solute (g) x 1000 volume (cm <sup>3</sup> )         1)       Calculate the concentration in g/dm <sup>3</sup> of 6g of magnesium chloride dissolved in 1.5 dm <sup>3</sup> of solution Concentration = 6/1.5 = 4 g/dm <sup>3</sup> 2)       Calculate the concentration in g/dm <sup>3</sup> of 40g of sodium hydroxide dissolved in 500 cm <sup>3</sup> of solution Concentration = 40/500 x 1000 = 80 g/dm <sup>3</sup> |
| Section 6: Limiting reactants                                                                                                                                                                                                                                                                                                                                          | (HT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of moles = $\frac{mass(g)}{M_r}$<br>Remember:<br>A <b>limiting reactant</b> is the <b>reactant</b> that <b>gets used up first</b> in a chemical reaction. It <b>limits the amount of product</b> formed.<br><b>Excess reactant</b> is the <b>reactant</b> that is <b>not completely used up</b> in a chemical reaction. There is some reactant left at the end. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>1) If you have 7.2g of magnesium reacting with 10.95g of dilute hydrochloric acid, which reactant is in excess?<br/>Mg<sub>(s)</sub> + 2HCl<sub>(aq)</sub> → MgCl<sub>2(aq)</sub> + H<sub>2(g)</sub></li> <li>Moles Mg = 7.2/24 = 0.3 mol<br/>Moles HCl = 10.95/36.5 = 0.3 mol<br/>From the balanced equation you see that 1 mole of Mg reacts with 2 moles of HCl.<br/>Hence 0.3 mol of Mg requires 0.6 mol of HCl to react completely. We only have 0.3 mol of HCl so dilute hydrochloric acid is the limiting reactant.</li> </ul>                                                                                                                                                                                                                                                                                                            |



# Chemistry Topic 4 Chemical calculations (Triple)

ORGANISER

| Section 8: Chemical calculations Key Terms (Triple)                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section 10: Atom economy (Triple)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yield of a chemical<br>reaction                                                                                                                                                                                                                                                                                                                                    | Describes how much product is made                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percentage atom economy = $\frac{\text{relative formula mass of desired product x 100}}{\text{sum of the relative formula masses of the reactants}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Percentage yield                                                                                                                                                                                                                                                                                                                                                   | Tells you how much product is made compared with the maximum amount that could be made.                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Atom Economy                                                                                                                                                                                                                                                                                                                                                       | A measure of the amount of starting materials that end up as useful products                                                                                                                                                                                                                                                                                                                                                                                                                    | 1) Calculate the atom economy for the production of dichloromethane $CH_2Cl_2$ .<br>$CH_4 + 2Cl_2 \longrightarrow CH_2Cl_2 + 2HCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Titration                                                                                                                                                                                                                                                                                                                                                          | Used to measure accurately what volumes of acid and alkali react together completely.                                                                                                                                                                                                                                                                                                                                                                                                           | Relative formula mass desired product $CH_2CI_2 = 12 + 2 + (2x35.5) = 85$<br>Sum of relative formula mass of all reactants = $12 + 4 + (2 \times 71) = 158$<br>Percentage atom economy = $85/158 \times 100 = 53.8\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Standard solution                                                                                                                                                                                                                                                                                                                                                  | A solution of known concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section 11: Titrations (Triple)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Section 9: The yie                                                                                                                                                                                                                                                                                                                                                 | eld of a chemical reaction (Triple)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A <b>Volumetric pipette</b> is used to measure out a fixed volume of solution<br>A <b>burette</b> is used to measure the volume of the solution added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of moles = $\frac{\text{mass } (g)}{M_r}$                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Steps for carrying out a titration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Percentage yield =</li> <li>1) A gas fired kiln p<br/>of Limestone (Conside produced?</li> <li>Moles of CaCO<sub>3</sub> =</li> <li>For every 1 mol of<br/>Hence theoretical<br/>Actual yield of Ca<br/>Percentage yield</li> <li>Factors affecting percentage yield</li> <li>Some unwanted</li> <li>Some of the des</li> <li>Reactants may be</li> </ul> | actual yield of product produced x 100<br>theoretical yield of product<br>roduced 100g of calcium oxide (CaO) from 200g<br>aCO <sub>3</sub> ). What is the percentage yield of calcium<br>$CaCO_3 \rightarrow CaO + CO_2$<br>= 200/100 = 2 mol<br>f CaCO <sub>3</sub> we make 1 mol of CaO<br>l yield of CaO = 2 x 56g = 112g<br>O = 100g<br>= 100/112 x 100 = 89.3%<br>ercentage yield<br>reversible<br>products may be formed<br>ired product lost in handling/left on apparatus<br>be impure | <ul> <li>Wash a volumetric pipette with distilled water followed by some of the alkali</li> <li>Measure a known volume of alkali into a conical flask using the pipette</li> <li>Add a few drops of indicator to the solution in the conical flask and swirl</li> <li>Place a white tile under the flask</li> <li>Rinse a burette with distilled water followed by some of the acid, allowing some of the acid to pass through the tap (filling the jet)</li> <li>Fill the burette up to the mark using the acid</li> <li>Record initial reading on the burette</li> <li>Open tap to slowly release acid into the conical flask whilst swirling</li> <li>Keep on repeating this until the indicator changes colour (end point)</li> <li>Record final volume reading on the burette by reading the bottom of the meniscus.</li> <li>Work out the volume of acid (titre) that was run into the flask</li> <li>Repeat the whole process at least three times until you get concordant titres</li> <li>Calculate the mean titre</li> <li>Use results to calculate concentration of the alkali in mol/dm<sup>3</sup></li> </ul> |



# Chemistry Topic 4 Chemical calculations (Triple)

| Section 12: Titration apparatus (Triple)                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Section 13 (cont): Titration calculations (Triple &amp; HT)</li> <li>A student titrated hydrochloric acid with 0.10 mol/dm<sup>3</sup> sodium hydroxide solution. The meth used is shown below:</li> <li>Pipette 25.0 cm<sup>3</sup> of sodium hydroxide solution into a conical flask.</li> <li>Add a few drops of Phenolphthalein indicator to the sodium hydroxide solution.</li> <li>Add hydrochloric acid solution from a burette until the end-point is reached. The table below shows the students results:</li> </ul> |                               |                                                                                                                                                                                                                                                                        |           |            | The method |         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|---------|---|
| Burotte White tile                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | Titre 1                                                                                                                                                                                                                                                                | Titre 2   | Titre 3    | Titre 4    | Titre 5 | ] |
|                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume<br>HCl cm <sup>3</sup> | 13.60                                                                                                                                                                                                                                                                  | 12.10     | 11.10      | 12.15      | 12.15   |   |
| hydrochloric<br>acid<br>Pipette                                                                                                                                                                                                                                                                                                                                                                              | The equation for the titration is: $HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(I)}$<br>1) Use concordant results in the table to calculate:<br>a) The mean titre b) Concentration of the hydrochloric acid solution<br>a) Concordant results are those within 0.10 cm <sup>3</sup> of each other.<br>Mean titre = $\frac{12.10 + 12.15 + 12.15}{3}$ = 12.13<br>b) Moles NaOH = 0.1 x 25/1000 = 0.0025<br>Moles HCI = Moles NaOH = 0.0025 x 1000/12.13 = 0.206 mol/dm <sup>3</sup>                                       |                               |                                                                                                                                                                                                                                                                        |           |            |            |         |   |
| Section 13: Titration calculations (Triple & HT)                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section                       | 14: Volu                                                                                                                                                                                                                                                               | me of gas | es (Triple | e & HT)    |         |   |
| Concentration (mol/dm <sup>3</sup> ) = $\frac{\text{number of moles x 1000}}{\text{volume (cm}^3)}$                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | Number of moles of gas = $\frac{\text{volume of gas (dm^3)}}{24 \text{ dm}^3}$ or $\frac{\text{volume of gas (cm^3)}}{24000 \text{ cm}^3}$                                                                                                                             |           |            |            |         |   |
| 1) In a titration, $20cm^3$ of $0.2 \text{ mol/dm}^3$ HCl reacted with $50cm^3$ of NaOH.<br>Calculate the concentration of the sodium hydroxide.<br>NaOH + HCl -> NaCl + H <sub>2</sub> O<br>Moles = Conc x vol/1000<br>hence moles HCl = $0.2 \times 20/1000 = 0.004$ mol<br>Ratio of HCl: NaOH 1:1 hence moles of NaOH is 0.004 mol<br>Concentration NaOH = $0.004 \times 1000/50 = 0.08 \text{ mol/dm}^3$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 2) How many moles of gas are present in 48 dm <sup>3</sup> of $CO_{2(g)}$<br><b>Moles = 48/24 = 2 moles</b><br>2) Calculate the volume of gas (in cm <sup>3</sup> ) in 1.5 moles of N <sub>2</sub> O <sub>4</sub><br><b>Volume = 1.5 x 24000 = 36000cm<sup>3</sup></b> |           |            |            |         |   |