ORGANISER

Section 1: Chemical calculations Key Terms	
Law of conservation of mass	No atoms are destroyed or created during a chemical reaction. The total mass of the products is the same as the total mass of the reactants. Some reactions appear to give a change in mass, but this is because a gas may have escaped from the reaction container.
Relative atomic mass (A_{r})	The average mass of an atom of an element compared to Carbon-12.
Relative formula mass (M_{r})	The sum of all the atomic masses of the atoms in a formula of a substance (e.g. CO_{2}).
Uncertainty	The interval within which the true value can be expected to lie. E.g. $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ - the true value lies between $23^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$.
Mole (HT)	A measurement for the amount of a chemical. It is the amount of substance in the relative atomic or formula mass of a substance in grams. The mass (in grams) of $\mathbf{6 . 0 2 \times 1 0 ^ { \mathbf { 2 3 } } \text { (the Avogadro constant) } { } ^ { 2 } \text {) } { } ^ { 2 } \text { . }}$ atoms of an element. Symbol: mol.
Balanced equation (HT)	Balanced symbol equations show the number of moles that react. $\text { e.g. } \mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$ Shows one mole of Calcium reacting with two moles of hydrochloric acid to form one mole of Calcium chloride and one mole of hydrogen.
Limiting reactant (HT)	The reactant that gets used up first in a chemical reaction. It limits the amount of product formed.
Excess reactant (HT)	The reactant that is not completely used up in a chemical reaction. There is some reactant left at the end.
Concentration	A measure of the number of particles of a chemical in a volume. Can be measured in $\mathrm{g} / \mathrm{dm}^{3}$.
Decimetre ${ }^{3}\left(\mathrm{dm}^{3}\right)$	A measurement of volume. Contains $1000 \mathrm{~cm}^{3}$.

Section 2: Calculating relative formula mass (Mr)
Add up all the atomic masses in a formula.

$$
\begin{gathered}
=16 . \\
12+(2 \times 16)=44
\end{gathered}
$$

Section 3: Calculating moles and masses (HT)

1) How many moles are there in 9.8 g of sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Number of moles $=\frac{9.8}{98}=0.1$ moles 98
2) What is the mass of 2.5 moles of Carbon dioxide?

Mass $=2.5 \times 44=88 \mathrm{~g}$

Section 4: Equations and calculations (HT)

1) What masses of reactants and products are involved in the balanced symbol equation $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$

Reactants: $(2 \times 1)+(2 \times 35.5)=73$
Products: $2 \times 36.5=73$
Number of moles $=\underline{\text { mass }(g)}$
M_{r}
2) What mass of oxygen will react with 72.0 g of magnesium?

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

Moles $\mathrm{Mg}=\mathbf{7 2 / 1 2}=\mathbf{3}$ moles Molar ratio Mg: O_{2} is $\mathbf{2 : 1}$
Moles $\mathrm{O}_{2}=3 / 2=1.5$ moles
Mass $\mathrm{O}_{2}=1.5 \times 32=48 \mathrm{~g}$

Section 5: From masses to balanced equations (HT)	
$\text { Number of moles }=\frac{\text { mass }(g)}{M_{r}}$	1) 8.08 g of Potassium nitrate KNO_{3} was decomposed on heating to form 6.8 g of potassium nitrite KNO_{2} and 1.28 g of oxygen. a) Calculate the number of moles of $\mathrm{KNO}_{3}, \mathrm{KNO}_{2}$ and O_{2} and hence Moles $\mathrm{KNO}_{\mathbf{3}}=\mathbf{8 . 0 8 / 1 0 1}=0.08$ Moles $\mathrm{KNO}_{2}=6.8 / 85=0.08$ Moles $\mathrm{O}_{\mathbf{2}}=1.28 / 32=0.04$ b) Use your answers to a) to work out the simplest whole number ratio of these values and use this to write a balanced equation for the reaction. $\begin{gathered} \text { Moles } \mathrm{KNO}_{3}: \mathrm{KNO}_{2}: \mathrm{O}_{2} \\ 0.08: 0.08: 0.04 \\ 2: 2: 1 \end{gathered}$ Hence equation is $2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}$

> | Section 7: Expressing concentrations $\left(\right.$ in $\left.\mathrm{g} / \mathrm{dm}^{3}\right)$ |
| :--- |
| If you are working in decimetres cubed $\left(\mathrm{dm}^{3}\right)$ |
| Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume }\left(\mathrm{dm}^{3}\right)}$ |
| If you are working in centimetres cubed $\left(\mathrm{cm}^{3}\right)$ |
| Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=\frac{\text { mass of solute }(\mathrm{g}) \times 1000}{\text { volume }\left(\mathrm{cm}^{3}\right)}$ |

1) Calculate the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ of 6 g of magnesium chloride dissolved in $1.5 \mathrm{dm}^{3}$ of solution
Concentration $=6 / 1.5=\mathbf{4} \mathbf{g} / \mathbf{d m}^{3}$
2) Calculate the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ of 40 g of sodium hydroxide dissolved in $500 \mathrm{~cm}^{3}$ of solution
Concentration $=\mathbf{4 0} / \mathbf{5 0 0} \times \mathbf{1 0 0 0}=\mathbf{8 0} \mathbf{g} / \mathrm{dm}^{3}$

Section 6: Limiting reactants (HT)

$$
\text { Number of moles }=\frac{\text { mass }(g)}{M_{r}}
$$

Remember:
A limiting reactant is the reactant that gets used up first in a chemical reaction. It limits the amount of product formed.

Excess reactant is the reactant that is not completely used up in a chemical reaction. There is some reactant left at the end.

1) If you have 7.2 g of magnesium reacting with 10.95 g of dilute hydrochloric acid, which reactant is in excess?

$$
\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Moles $\mathrm{Mg}=7.2 / 24=0.3 \mathrm{~mol}$
Moles $\mathrm{HCl}=10.95 / 36.5=0.3 \mathrm{~mol}$
From the balanced equation you see that 1 mole of $\mathbf{M g}$ reacts with 2 moles of HCl.
Hence 0.3 mol of $\mathbf{M g}$ requires 0.6 mol of $\mathbf{~ H C l}$ to react completely. We only have 0.3 mol of HCl so dilute hydrochloric acid is the limiting reactant.

ORGANISER

Section 8: Chemical calculations Key Terms (Triple)	
Yield of a chemical reaction	Describes how much product is made
Percentage yield	Tells you how much product is made compared with the maximum amount that could be made.
Atom Economy	A measure of the amount of starting materials that end up as useful products
Titration	Used to measure accurately what volumes of acid and alkali react together completely.
Standard solution	A solution of known concentration.

Section 9: The yield of a chemical reaction (Triple)
Number of moles $=\underline{\text { mass }(g)}$
M_{r}
Percentage yield $=$ actual yield of product produced $\times 100$ theoretical yield of product

1) A gas fired kiln produced 100 g of calcium oxide (CaO) from 200 g of Limestone $\left(\mathrm{CaCO}_{3}\right)$. What is the percentage yield of calcium oxide produced? $\quad \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

Moles of $\mathrm{CaCO}_{3}=\mathbf{2 0 0} / \mathbf{1 0 0}=\mathbf{2} \mathbf{~ m o l}$
For every 1 mol of CaCO_{3} we make 1 mol of CaO
Hence theoretical yield of $\mathbf{C a O}=2 \times 56 \mathrm{~g}=112 \mathrm{~g}$
Actual yield of $\mathbf{C a O}=\mathbf{1 0 0 g}$
Percentage yield $=100 / 112 \times 100=89.3 \%$
Factors affecting percentage yield

- Reaction may be reversible
- Some unwanted products may be formed
- Some of the desired product lost in handling/left on apparatus Reactants may be impure

Section 10: Atom economy (Triple)

Percentage atom economy $=\underline{\text { relative formula mass of desired product } \times 100}$ sum of the relative formula masses of the reactants

1) Calculate the atom economy for the production of dichloromethane $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$$
\mathrm{CH}_{4}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+2 \mathrm{HCl}
$$

Relative formula mass desired product $\mathrm{CH}_{2} \mathrm{Cl}_{2}=12+2+(2 \times 35.5)=85$
Sum of relative formula mass of all reactants $=12+4+(2 \times 71)=158$
Percentage atom economy $=85 / 158 \times 100=53.8 \%$

Section 11: Titrations (Triple)

A Volumetric pipette is used to measure out a fixed volume of solution
A burette is used to measure the volume of the solution added

Steps for carrying out a titration

- Wash a volumetric pipette with distilled water followed by some of the alkali
- Measure a known volume of alkali into a conical flask using the pipette
- Add a few drops of indicator to the solution in the conical flask and swirl
- Place a white tile under the flask
- Rinse a burette with distilled water followed by some of the acid, allowing some of the acid to pass through the tap (filling the jet)
- Fill the burette up to the mark using the acid
- Record initial reading on the burette
- Open tap to slowly release acid into the conical flask whilst swirling
- Keep on repeating this until the indicator changes colour (end point)
- Record final volume reading on the burette by reading the bottom of the meniscus.
- Work out the volume of acid (titre) that was run into the flask
- Repeat the whole process at least three times until you get concordant

titres

- Calculate the mean titre
- Use results to calculate concentration of the alkali in $\mathrm{mol} / \mathrm{dm}^{3}$

Chemistry Topic 4 Chemical calculations (Triple)

ORGANISER

[^0]
Section 13 (cont): Titration calculations (Triple \& HT)

A student titrated hydrochloric acid with $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide solution. The method used is shown below:

- Pipette $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution into a conical flask.
- Add a few drops of Phenolphthalein indicator to the sodium hydroxide solution.
- Add hydrochloric acid solution from a burette until the end-point is reached.

The table below shows the students results:

	Titre 1	Titre 2	Titre 3	Titre 4	Titre 5
Volume $\mathrm{HCl} \mathrm{cm}^{3}$	13.60	12.10	11.10	12.15	12.15

1) Use concordant results in the table to calculate:
a) The mean titre
b) Concentration of the hydrochloric acid solution
a) Concordant results are those within $0.10 \mathrm{~cm}^{3}$ of each other.
Mean titre $=12.10+12.15+12.15=12.13$ Mean titre $=\frac{12.10+12.15+12.15}{3}=12.13$
b) Moles $\mathrm{NaOH}=\mathbf{0 . 1} \times 25 / 1000=0.0025$

Moles $\mathrm{HCl}=$ Moles $\mathrm{NaOH}=\mathbf{0 . 0 0 2 5}$
Concentration $\mathrm{HCl}=0.0025 \times 1000 / 12.13=0.206 \mathrm{~mol} / \mathrm{dm}^{3}$
The equation for the titration is: $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$

1) Use concordant results in the table to calculate:
\qquad

Section 14: Volume of gases (Triple \& HT)
Number of moles of gas $=\frac{\text { volume of gas }\left(\mathrm{dm}^{3}\right)}{24 \mathrm{dm}^{3}}$ or volume of gas $\left(\mathrm{cm}^{3}\right)$
2) How many moles of gas are present in $48 \mathrm{dm}^{3}$ of $\mathrm{CO}_{2(\mathrm{~g})}$

Moles $=\mathbf{4 8} / \mathbf{2 4} \mathbf{=} \mathbf{2}$ moles
2) Calculate the volume of gas (in cm^{3}) in 1.5 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$

Volume $=1.5 \times 24000=36000 \mathrm{~cm}^{3}$

[^0]: ## Section 13: Titration calculations (Triple \& HT)

 Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)=$ number of moles $\times 1000$

 1) In a titration, $20 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}$ reacted with $50 \mathrm{~cm}^{3}$ of NaOH . Calculate the concentration of the sodium hydroxide.

 $$
 \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
 $$

 Moles $=$ Conc \mathbf{x} vol/ 1000
 hence moles $\mathbf{H C l}=0.2 \times 20 / 1000=0.004 \mathbf{~ m o l}$
 Ratio of HCl : $\mathrm{NaOH} 1: 1$ hence moles of NaOH is 0.004 mol
 Concentration $\mathrm{NaOH}=0.004 \times 1000 / 50=0.08 \mathrm{~mol} / \mathrm{dm}^{3}$

 $$
 \text { volume }\left(\mathrm{cm}^{3}\right)
 $$

 $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
 Se

