Maths Grade 1
 Knowledge Organiser

1.1 Multiple, factor, prime square, cube

- FACTORS are what divides exactly into a number
e.g. Factors of 12 are:

1	12
2	6
3	4

- PRIMES have only TWO factors
e.g. Factors of 7 are 1 and 7 7 is PRIME
- MULTIPLES are the times table answers
e.g. Multiples of 5 are:

$$
\begin{array}{lllll}
5 & 10 & 15 & 20 & 25
\end{array}
$$

- SQUARES are the result of multiplying a number by itself
e.g. $1 \times 1=1$
$2 \times 2=4$

- CUBES are the result of multiplying a number by itself \& itself again
e.g. $1 \times 1 \times 1=1$
$2 \times 2 \times 2=8$
$3 \times 3 \times 3=27$

1.2 Multiply by a two digit number

Try different methods to find which suits you
e.g. 152×34

$$
\begin{aligned}
& \frac{\text { COLUMN METHOD }}{152} \\
& \frac{34 x}{608}(x 4) \\
& \frac{4560}{\underline{5168}}(x 30)
\end{aligned}
$$

e.g. 152×34

GRID METHOD

	100	50	2
30	3000	1500	60
4	400	200	8

$152 \times 34=3400+1700+68=\underline{5168}$

1.2 Divide by a two digit number

Try different methods to find which suits you
e.g. $4928 \div 32$ BUS SHELTER METHOD

- Divide
- Multiply
- Subtract
- Bring down - Make a new number
- Divide ...

$$
\begin{array}{r}
0154 \\
32 \begin{array}{r}
4928 \\
-32 \downarrow \\
172 \\
-160 \\
128 \\
-128 \\
000
\end{array}
\end{array}
$$

$4928 \div 32=\underline{154}$
e.g. $4928 \div 32$ CHUNKING METHOD

$$
\begin{array}{rr}
4928 & \\
3200 & 100 \times 32 \\
\hline 1728 & \\
1600 & 50 \times 32 \\
\hline 128 & 4 \times 32
\end{array}
$$

$$
4928 \div 32=\underline{154}
$$

e.g. $4928 \div 32$

SHORT DIVISION METHOD

(Except write down some of your tables down first)
32
64
96

$$
3 2 \longdiv { 0 1 5 4 } \begin{array} { c }
{ 0 4 9 ^ { 4 } 9 ^ { 1 7 } 2 ^ { 1 2 } 8 }
\end{array}
$$

128
160

1.3 Rounding to estimate answers

- To estimate round to 1 digit greater than 0 (1 significant figure)
e.g. $35.6 \times 4.21 \approx 40 \times 4=160$

1.4 Fraction, decimal, percentage equivalents

LEARN THESE:

$$
\begin{aligned}
& \frac{1}{4}=0.25=25 \% \\
& \frac{1}{2}=0.5=50 \% \\
& \frac{3}{4}=0.75=75 \%
\end{aligned}
$$

When ordering-make them all decimals

1.5 Convert mixed numbers to improper fractions \& vv

- An improper fraction is top heavy \& can be changed into a mixed number $\frac{3}{2}$ can be shown in a diagram

- A mixed number can be changed back into an improper fraction

$$
\frac{1}{+1} \frac{3}{2}=\frac{3}{2}
$$

1.6 Simple ratio

The ratio of squares to triangles can bedwritten

Ratios can be simplified just like fractions

1.7 Balancing number equations

- Use balancing:
$20+\square=20 \times 4$
$20+\square=80$
$20+60=80 \quad(80-20=60)$

1.8 Add \& subtract decimals

- Line up the digits and the decimal points
e.g. $28.5+0.37+7$

$$
\begin{gathered}
28.5 \\
0.37 \\
7 \\
\hline 35.87
\end{gathered}
$$

1.8 Multiply a decimal

e.g. 28.5×3

$$
\begin{array}{r}
28.5 \\
213 x \\
\hline 85.5
\end{array}
$$

1.9 Write algebraic expressions

No ' x ' or ' \because ' signs in algebra
$2 x a$ is written $2 a$
$a \times b$ is written $a b$
$a \times a$ is written a^{2}
$a \div 2$ is written $\frac{a}{2}$

1.10 Simply algebraic expressions

Like terms can be added and subtracted
e.g. $2 a+3 a=5 a$
$6 y-2 y=4 y$
y^{2} and y are UNLIKE terms

1.11 Using a word formula

Read the word formula carefully and follow the worded instructions

1.12 Number Patterns

- A list of numbers with a pattern is called a SEQUENCE
- The numbers are called TERMS
- A 'TERM TO TERM RULE' tells you how to get from one term to the next
It might be add, subtract, multiply or divide by something
This is a sequence:

1.13 Number machines

e.g. Given INPUT, find OUTPUT

e.g. Given OUTPUT, find INPUT

Use INVERSE OPERATIONS

- To undo ADD, just SUBTRACT
e.g. $36+23=59(59-36=23)$
- To undo MULTIPLY, just DIVIDE
e.g. $7 \times 3=21(21 \div 7=3)$

1.14 Solve equations

- Find a number to replace the letter
- Check to make sure it works
e. $9 \frac{y}{5}=4$

Y must be 20 because $20 \div 5=4$

1.15 Coordinates in 4 quadrants

- The number off the x-axis is first in the bracket (x, y)
- Mark a point accurately with a cross
- Put its letter in front

1.16 Angles about a point

These add up to 360°

1.16 Angles on a straight line

These add up to 180°

1.19 Use a ruler accurately

Measure from 0

This line is 14.7 cm long

Use a protractor accurately

Count the number of degrees between the 2 arms of the angle. This angle is 127°

1.17 Properties of 2D shapes

TRIANGLES - angles add up to 180°

Isosceles triangle

- 2 equal sides
- 2 equal angles
- 1 line of symmetry
- No rotational symmetry

Equilateral triangle

3 equal sides

- 3 equal angles -60°
- 3 lines of symmetry
- Rotational symmetry order 3

Trapezium

Kite

- One pair of opposite angles equal
- 2 pairs of adjacent sides equal
- ONE line of symmetry
- No rotational symmetry

QUADRILATERALS - all angles add up to 360°

Square

- 4 equal sides
- 4 equal angles -90°
- 4 lines of symmetry
- Rotational symmetry order 4

Rectangle

- Opposite sides equal
- 4 equal angles -90°
- 2 lines of symmetry
- Rotational symmetry order 2

Parallelogram

- Opposite sides parallel
- Opposite angles equal
- NO lines of symmetry
- Rotational symmetry order 2

Rhombus (like a diamond)

- Opposite sides parallel
- Opposite angles equal
- 2 lines of symmetry
- Rotational symmetry order 2

1.17 Properties of 3D shapes

PRISMS- same cross section through length
Cube and cuboid

- 6 faces
- 12 edges
- 8 vertices

Triangular prism

Cylinder - special prism

PYRAMIDS- a point opposite the base

Pyramid - square based

- 5 faces
- 8 edges
- 5 vertices

Pyramid - triangular based

- 4 faces
- 6 edges
- 4 vertices

Cone - special pyramid

SPHERES- ball shape

TRANSFORMATIONS

1.18 Reflect in a mirror line

- To reflect a shape in a 45° line Distances from shape to mirror and mirror to reflection must be same Tracing paper is useful:

1. Trace the shape \& the mirror line
2. Flip the tracing paper over the mirror line
3. Redraw the shape in its new position

1.18 Translate a shape

- Move horizontally 5 spaces right

- Move vertically 4 spaces down

1.18 Rotate a shape

- To rotate a shape 180° about P Tracing paper is useful:

1. Trace the shape
2. Hold the shape down with a pencil
3. Rotate tracing paper
4. Redraw the shape in its new position

1.20 Find perimeter of simple shapes

Perimeter is round the OUTSIDE
Perimeter of this shape $=12 \mathrm{~cm}$

Area is the number of squares INSIDE Area of this shape $=5 \mathrm{~cm}^{2}$

1.21 Use a Venn Diagram

- To place these numbers onto a Venn diagram

$$
\begin{array}{llllll}
3 & 4 & 6 & 8 & 9 & 12
\end{array}
$$

Multiples of 4 Multiples of 3

1.21 Use a Carroll Diagram

- A Carroll diagram is also known as a 2 Way Table.
- To place numbers 1 to 20 onto a Carroll diagram

Square number Not a square number Even 4 16 2 6 8 10 12 14 18 20					
Odd	1	9	3 5 7 11 13 15 17 19		

1.22 Mode and Range

- Mode is the most frequent measure
- Range is (highest - lowest) measure

Example

$1,5,3,4,3,7,3,3,5$,
Mode $=3$ (There are 4 of them)
Range $=7-1=6$

Example 2

$1,5,3,4,3,7,3,5,5$,
Mode $=3$ or 5
(There are 3 of each of them. You are allowed 2 modes. This is called Bi -Modal)

Example 3

$1,4,3,4,3,7,2,5,5$,
NO MODE - You are not allowed 3 modes !

1.23 Probability

- Probability words are used to describe how likely it is that an event will happen.
Examples of probability words are
- certain
- likely
- even chance
- unlikely
- impossible

Other words:

- Equally likely - when all outcomes have the same chance of occurring
- Biased - when all outcomes do NOT have the same chance of occurring
- Probability as a fraction
$P($ event $)=$ No. of outcomes which give the event
Total number of outcomes

$2 \times$ times table				
1	x	2	$=$	2
2	x	2	$=$	4
3	x	2	$=$	6
4	x	2	$=$	8
5	x	2	$=$	10
6	x	2	$=$	12
7	x	2	$=$	14
8	x	2	$=$	16
9	x	2	$=$	18
10	x	2	$=$	20
11	x	2	$=$	22
12	x	2	$=$	24

$4 \times$ times table				
1	\times	4	$=$	4
2	\times	4	$=$	8
3	\times	4	$=$	12
4	\times	4	$=$	16
5	\times	4	$=$	20
6	\times	4	$=$	24
7	\times	4	$=$	28
8	\times	4	$=$	32
9	\times	4	$=$	36
10	\times	4	$=$	40
11	\times	4	$=$	44
12	\times	4	$=$	48

$3 x$ times table				
1	x	3	$=$	3
2	x	3	$=$	6
3	x	3	$=$	9
4	x	3	$=$	12
5	x	3	$=$	15
6	x	3	$=$	18
7	x	3	$=$	21
8	x	3	$=$	24
9	x	3	$=$	27
10	x	3	$=$	30
11	x	3	$=$	33
12	x	3	$=$	36

$5 \times$ times table				
1	x	5	$=$	5
2	x	5	$=$	10
3	x	5	$=$	15
4	x	5	$=$	20
5	x	5	$=$	25
6	x	5	$=$	30
7	x	5	$=$	35
8	x	5	$=$	40
9	x	5	$=$	45
10	x	5	$=$	50
11	x	5	$=$	55
12	x	5	$=$	60

$6 \times$ times table				
1	x	6	$=$	6
2	x	6	$=$	12
3	x	6	$=$	18
4	x	6	$=$	24
5	x	6	$=$	30
6	x	6	$=$	36
7	x	6	$=$	42
8	x	6	$=$	48
9	x	6	$=$	54
10	x	6	$=$	60
11	x	6	$=$	66
12	x	6	$=$	72

$8 \times$ times table

1	x	8	$=$	8
2	x	8	$=$	16
3	x	8	$=24$	
4	x	8	$=$	32
5	x	8	$=$	40
6	x	8	$=$	48
7	x	8	$=$	56
8	x	8	$=64$	
9	x	8	$=72$	
10	x	8	$=80$	
11	x	8	$=88$	
12	x	8	$=96$	

$9 x$ times table

1	x	9	$=$
2	x	9	$=$
3	x	9	$=$
4	x	9	$=$
5	x	9	$=$
6	x	9	$=$
7	x	9	$=$
8	x	9	$=$
9	x	9	$=$
10	x	9	$=$
11	x	9	$=9$
12	x	9	$=108$

$10 \times$ times table				
1	\times	10	$=$	10
2	x	10	$=$	20
3	x	10	$=$	30
4	x	10	$=$	40
5	x	10	$=$	50
6	x	10	$=$	60
7	x	10	$=$	70
8	x	10	$=$	80
9	x	10	$=$	90
10	x	10	$=100$	
11	x	10	$=$	110
12	x	10	$=120$	

$12 \times$ times table			
1	x	12	$=$
2	x	12	$=$
3	x	12	$=$
4	x	12	$=$
5	x	12	$=$
6	x	12	$=$
7	x	12	$=$
8	x	12	$=84$
9	x	12	$=$
10	x	12	$=108$
11	x	12	$=120$
12	x	12	$=132$

$11 \times$ times table				
1	x	11	$=$	11
2	x	11	$=$	22
3	x	11	$=$	33
4	x	11	$=$	44
5	x	11	$=$	55
6	x	11	$=$	66
7	x	11	$=$	77
8	x	11	$=$	88
9	x	11	$=$	99
10	x	11	$=$	110
11	x	11	$=$	121
12	x	11	$=132$	

You MUST know your tables.
You need to recite them in a sing song way to help you remember them.

For example:
"One 3 is 3 ,
Two 3's are 6,
Three 3's are 9,
Four 3's are 12,... ."
You will be tested.
You must know them.
You CAN do this.

Practise until you do.

