KNOWLEDGE

ORGANISER

Section 1: Key terms	
Displacement	The distance an object moves in a given direction. A vector quantity.
Velocity	The speed of an object in a given direction. A vector.
Acceleration	The change of an object's velocity per second.
Resultant force	The overall force once all the forces have been considered.
Terminal velocity	The velocity an object eventually reaches when it is falling. The weight of the object is then equal to the frictional force on the object.
Stopping distance	The shortest distance a vehicle can safely stop in. It depends on thinking distance and braking distance.
Momentum	A moving object with mass has momentum. Momentum is "mass in motion" It is a vector quantity.
Conservation of momentum (HT)	In a closed system, total momentum before an event is the same as the total momentum after the event.
Closed system (HT \& Triple)	A system with no external forces acting on it.

Section 2: Forces and acceleration

$\begin{aligned} & \mathrm{Ne} \\ & \mathrm{se} \\ & \mathrm{lay} \\ & \mathrm{~m} \end{aligned}$	The acceleration of an object is: - Directly proportional to the force - Indirectly proportional to mass	We can investigate the relationship between force and acceleration by using a trolley with constant mass, newton-meter, motion sensor and a computer.
	The greater the resultant force on an object, the greater the objects acceleration. If an object is not accelerating then the resultant force on the object must be zero.	
	The greater the mass of an object, the smaller its acceleration for a given force.	
Calculation of resultant force	Resultant force = ma $f=m x$	```Force - newtons (N) Mass - kilograms (kg) Acceleration = metres per seco squared (m/s}\mp@subsup{\textrm{s}}{}{2}```
$\begin{aligned} & \text { Inerti } \\ & (\mathrm{HT}) \end{aligned}$	the inertia of an object is its tendency to stay at rest or in uniform motion (moving at constant speed in a straight line.)	

$\left.\begin{array}{|l|l|}\hline \text { Section 3: Weight and terminal velocity } \\ \hline \text { Weight } & \begin{array}{l}\text { The weight of an object is the force acting on the } \\ \text { object due to gravity. Measured in newtons, } \mathrm{N} .\end{array} \\ \hline \text { Mass } & \text { The quantity of matter in it. Measured in Kg. } \\ \hline \begin{array}{l}\text { Gravitational } \\ \text { field strength. }\end{array} & \begin{array}{l}\text { The gravitational force on a } 1 \mathrm{~kg} \text { object is called } \\ \text { the gravitational field strength. An object acted } \\ \text { on only by gravity accelerates at about 10m/s } \\ \text { the Earth. }\end{array} \\ \hline \begin{array}{l}\text { Calculating } \\ \text { weight }\end{array} & \begin{array}{l}\text { weight mass x gravitational field strength. } \\ \mathrm{w}=\mathrm{m} \quad \mathrm{x} \quad \mathrm{g}\end{array} \\ \begin{array}{l}\text { Weight - newtons (N) } \\ \text { Mass - kilograms (kg) } \\ \text { GFS - newtons per kilogram (N/kg) }\end{array} \\ \hline \begin{array}{l}\text { Terminal } \\ \text { velocity }\end{array} & \begin{array}{l}\text { When a parachutist jumps out of a plane, the only } \\ \text { force acting is weight (gravity.) As the parachutist }\end{array} \\ \text { falls air resistance acts upwards. The resultant } \\ \text { Ball bearing } \\ \text { falling though } \\ \text { farce is downwards as weight is greater than air } \\ \text { resistance, hence the parachutist accelerates. As } \\ \text { velocity increases, so does air resistance. } \\ \text { Terminal velocity is reached when the forces } \\ \text { are balanced (when air resistance = weight.) }\end{array}\right\}$

When the parachute opens, the surface area increases hence there's much more air resistance. The weight (downwards force) is still the same, hence the terminal velocity decreases allowing the parachutist to hit the ground at a safe speed.

KNOWLEDGE

ORGANISER

Section 4: Forces and braking		
Thinking distance	The distance a car travels while the driver reacts.	
Factors affecting thinking distance	1. Tiredness 2. Drugs 3. Alcohol 4. Distractions (e.g. mobile phones)	
Braking distance	The distance a car travels while the brakes.	is stopped by the
Factors affecting braking distance	1. How fast you are going 2. Road conditions (weather e.g. Water 3. Conditions of tyres and brakes. 4. Type of road surface 5. Mass of vehicle	ice)
Stopping distance	The sum of the thinking distance and	king
30 mph ($48 \mathrm{~km} / \mathrm{h}$)	$14 \mathrm{~m}=\begin{gathered} =23 \text { metres }(75 \text { feet) } \\ \text { or } 6 \text { car lengths } \end{gathered}$	THINKING DISTANCE
50mph (80km/h)	$38 \mathrm{~m}=\begin{aligned} & 53 \text { metres (} 1755 \text { feet) } \\ & \text { or } 13 \text { car lengths } \end{aligned}$	BRAKING DISTANCE
70 mph	$21 \mathrm{~m}>75 \mathrm{~m}$	$\begin{aligned} & =96 \text { metres (} 314 \text { feet) } \\ & \text { or } 24 \text { car lengths } \end{aligned}$

Section 5: Momentum (HT)

All moving objects have momentum. The greater the mass and velocity of an object, the greater its momentum. Momentum has size and direction so is a vector quantity.

Calculating Momentum	Momentum $=$ mass \times velocity	Momentum $-\mathrm{Kg} \mathrm{m} / \mathrm{s}$ Mass -Kg
Velocity $-\mathrm{m} / \mathrm{s}$		

In a closed system, total momentum before an event is the same as the total momentum after the event. Momentum is conserved in a collision or an explosion as no external forces act on the objects. After a collision, the colliding objects may move off together or may move apart.

KNOWLEDGE

Section 7: Using conservation of momentum (triple only)

When two objects push each other apart, they move with different speeds if they have unequal masses and with equal and opposite momentum, so their total momentum is zero. This means that the momentum lost by one of the objects will be gained by the other object. Hence whenever two objects collide or interact, momentum is conserved.

Calculating Momentum	$\begin{gathered} \text { Momentum }=\text { mass } \times \text { velocity } \\ \mathrm{p}=\mathrm{m} \times \mathrm{v} \end{gathered}$	$\begin{aligned} & \text { Mass - Kg } \\ & \text { Velocity }-\mathrm{m} / \mathrm{s} \end{aligned}$
Two roller skaters, a girl and a boy stand facing each other on flat level ground. When one of the roller skaters pushes the other one away, they move away in opposite directions at different velocities because they have different masses.	ters, a girl and facing flat level one of the pushes the way, they opposite Momentum of boy different Momentum of girl cause they Total momentum masses. The minus sign t of the girl is in the momentum of the	$\begin{aligned} & 60 \times 2=120 \mathrm{Kg} \mathrm{~m} / \mathrm{s} \\ & -40 \times 3=-120 \mathrm{Kg} \mathrm{~m} / \mathrm{s} \\ & 120-120=\mathbf{0 ~ K g ~ m} / \mathrm{s} \end{aligned}$ you that the momentum pposite direction to the .
Explosions	Total momentum same as before momentum after th Momentum before	ter an explosion is the explosion. The total explosion is zero. $=$ Momentum after

Section 8: Impact forces (HT triple only)

Collisions	When two vehicles collide, the force of the impact depends on the mass, change of velocity and length of the impact time. - They exert equal and opposite forces on each other - Their total momentum is unchanged.		
Length of impact time	Longer the impact time, the more the impact force is reduced.		
Impact force	$\text { Impact force }=\frac{\text { change in momentum }}{\text { time taken }} \quad F=\frac{m \Delta v}{\Delta t}$		
	Force	F	Newtons, N
	$\mathrm{m} \Delta \mathrm{v}$	Change in momentum	$\mathrm{Kg} \mathrm{m} / \mathrm{s}$
	$\Delta \mathrm{t}$	Time taken	S

Section 9: Safety first (HT triple only)

When you are driving in a car or riding a bike you want to feel safe if you crash. Different safety features have been designed to increase the impact time and hence decrease the rate of change in momentum.
Cycle helmets \& cushioned Reduce impact forces by increasing impact surfaces in playgrounds/gyms time.

Spread force across chest and increase impact time. Hence reduces impact force on head.

Seat belts \& air bags
Crumple zones \& collapsible

Car safety features

