KNOWLEDGE

Physics Topic P10 Forces in action – Forces and motion

Section 1:	: Key teri	ns		Section 3: Weight and terminal velocity				
Displacement		The distance an object mov quantity.	es in a given direction . A vector	Weight	The weight of an object is the force acting on the object due to gravity . Measured in newtons, N.			
Velocity		The speed of an object in a	given direction. A vector.	Mass	The guantity of matter in it. Measured in Kg.			
Acceleration		The change of an object's ve	elocity per second.	Gravitational	The gravitational force on a 1kg object is called			
Resultant force		The overall force once all th	e forces have been considered.	field strength.	the gravitational field strength. An object acted on only by gravity accelerates at about $10m/s^2$ or			
		The velocity an object ever	ntually reaches when it is falling.		the Farth.			
Terminal ve	elocity	The weight of the object	t is then equal to the frictional	Calculating	weight = mass x gravitational field strength.			
		force on the object.	understand and the stand in the	weight	$w = m \times q$			
Stopping distance		The shortest distance a depends on thinking distan	vehicle can safely stop in. It ce and braking distance.		Weight pourtons (N)			
Momontum		A moving object with ma	ss has momentum. Momentum is		Mass = kilograms (kg)			
Momentum	1	" mass in motion " It is a vec	tor quantity.		GES – newtons per kilogram (N/kg)			
Conservatio	on of	In a closed system, total mo	omentum before an event is the	Terminal	When a parachutist jumps out of a plane, the only force acting is weight (gravity.) As the parachutist			
momentum	n (HT)	same as the total moments	um after the event.	velocity				
Closed syst	em (HT	A system with no external forces acting on it		,	falls air resistance acts upwards. The resultant			
& Triple)				Ball bearing	force is downwards as weight is greater than air			
Section 2	Forces a	and acceleration		falling though	resistance, hence the parachutist accelerates. As			
Newton's	The acce	eration of an object is:	We can investigate the	a fluid.	velocity increases, so does air resistance.			
second • Directl		y proportional to the force	relationship between force and	Drag	Terminal velocity is reached when the force			
law of	 Indire 	ctly proportional to mass	acceleration by using a trolley with	≜ Lidg	are balanced (when air resistance = weight.)			
motion			constant mass, newton-meter,		70 Opens parachute			
			motion sensor and a computer.		60 terminal			
Effect of	The grea	ter the resultant force on	an object, the greater the objects		50			
force acceleration		tion. If an object is not acce	lerating then the resultant force on	↓ ↓	velocity in accelerates decelerates			
	the objec	t must be zero.		Weight	second 301			
Effect of	The grea	ter the mass of an object, t	the smaller its acceleration for a	The ball				
Calculation	Bocultant	force - mass v acceleration	Force nowtone (N)	bearing	0 terminal velocity			
of	Resultant	TOICE - Mass & acceleration	Mass = kiloarams (ka)	reaches its	Time in seconds			
resultant		f=m x a	Acceleration = metres per second	terminal	When the parachute opens, the surface area			
force			squared (m/s ²)	the drag is	Increases nence there's much more air resistance.			
Inertia	the inertia	a of an object is its tendency t	to stay at rest or in uniform motion	ule arag is	hence the terminal velocity decreases allowing the parachutist to hit the ground at a safe speed.			
(HT)	(moving	at constant speed in a straight	line.)	weight				
	Ĺ				and parachador to the the ground at a sale speed.			

Physics Topic P10 Forces in action – Forces and motion

Section 4: Forces	and braking	Section 6: Forces and elasticity			
Thinking distance	The distance a car travels while the driver reacts . 1. Tiredness	Elastic deformation	Occurs when a spring is stretched and can then return to its original length .		
Factors affecting thinking distance	2. Drugs 3. Alcohol	Inelastic deformation	Occurs when a spring is stretched and its length is permanently altered.		
Braking distance	The distance a car travels while the car is stopped by the brakes.	Limit of proportionality The length a spring can be stretched befo it no longer is able to return to its origin length . Beyond the limit of proportionality			
Factors affecting braking distance	 How fast you are going Road conditions (weather e.g. Water or ice) Conditions of tyres and brakes. Type of road surface 	Extension	force-extension graph is curved. Difference between the length of an object and its original length.		
	5. Mass of vehicle	Force extension graph			
Stopping distance	The sum of the thinking distance and braking distance.	from a spring it will stretch. If you plot a graph of the			
30mph (48km/h) 9m 50mph (80km/h) 15m 70mph (112km/h) 15m	14m= 23 metres (75 feet) or 6 car lengthsTHINKING DISTANCE38m= 53 metres (175 feet) or 13 car lengthsBRAKING DISTANCE21m75m= 96 metres (314 feet) or 24 car lengths	spring's extension force applied, you straight line that through the origin extension is proportional to th applied .	against get a passes The maximum of proportionality directly le force Extension in proportional to force		
Section 5: Momen All moving objects object, the greater vector quantity.	tum (HT) have momentum. The greater the mass and velocity of an its momentum. Momentum has size and direction so is a	However if you ap much force , th begins to curve you have exceeded of proportionality .	ply too ne line because the line		
Calculating Momentum	Momentum = mass x velocity Momentum – Kg m/s Mass - Kg p = m x v Velocity – m/s	Objects and mater Hooke's law . H proportional to t	ials that behave like this are said to obey looke's law states that extension is directly he force applied, provided the limit of		
In a closed system the same as the Momentum is conse external forces act colliding objects may	, total momentum before an event is total momentum after the event. erved in a collision or an explosion as no on the objects. After a collision, the y move off together or may move apart.	Force applie Hooke's law	t exceeded. ed = spring constant x extension F = k x e Force – newtons, N Spring constant N/m Extension – metres m		

KNOWLEDGE

Physics Topic P10 Forces in action – Forces & motion (triple)

ORGANISER

Section 7: Using conservation of momentum (triple only) When two objects push each other apart, they move with different speeds if they have unequal masses and with equal and opposite momentum, so their total momentum is zero. This means that the momentum lost by one of the objects will be gained by the other object. Hence whenever two objects collide or interact, momentum is				Section 8: I Collisions	mpact forces () When two ve depends on the the impact time • They exert () • Their total	 pact forces (HT triple only) When two vehicles collide, the force of the impact depends on the mass, change of velocity and length of the impact time. They exert equal and opposite forces on each other Their total momentum is unchanged. 				
Conserved. Calculating Momentum = mass x velocity Momentum - Ka m/s			limpact time	reduced						
Momentum		$p = m \times v$	Mass - Kg Velocity – m/s		Impact force = $\frac{change in momentum}{time taken}$ $F = \frac{m\Delta v}{\Delta t}$					
		60 kg	mass 40 kg	Impact force	Force		F	Newtons, N		
Two roller skaters, a girl and a boy stand facing		2.0 m/s ← 3.0 m/s	→ 3.0 m/s		mΔυ		Change in momentum	Kg m/s		
each other on flat level					Δt		Time taken	S		
ground. When one of the roller skaters pushes the other one away, they move away in opposite directions at different velocities because they have different masses.				Section 9: Safety first (HT triple only)When you are driving in a car or riding a bike you want to feel safe if you crash. Different safety features have been designed to increase the impact time and hence decrease the rate of change in momentum.Cycle helmets & cushioned surfaces in playgrounds/gymsReduce impact forces by increasing impact time.Seat belts & air bagsSpread force across chest and increase impact time. Hence reduces impact force on bead						
Explosions		Total momentum after an explosion is the same as before the explosion. The total momentum after the explosion is zero . Momentum before = Momentum after		Crumple zones & collapsible Give way in an impact and hence increas steering wheels. the impact time.						
before	0 -	af		Car safety features	Airbag		rear crumple zone rear seat belts seat belts seat belts	airbags front crumple zone bollapsible		

steering wheel