
KNOWLEDGE

Chemistry Topic 7 Energy changes

ORGANISER

Section 1 Energy Cha	inges Key Te	rms		Section 2	2b Reac	tion profiles	s – Endothe	ermic rea	action
Conservation of energy		neither created o from one store to a		1	•				
ΔH	Change in energy of a system in a reaction, its units are KJ/mol					ŧ	\sim		
Exothermic	so the temp e.g. combus in self-hea	A reaction that transfers energy to the surroundings so the temperature of the surroundings increases, e.g. combustion and neutralisation reactions. Used in self-heating cans and hand warmers. Has a negative value of ΔH				activation energy Energy taken in			
Endothermic	surrounding surrounding	decreases , ion. Used in sports i	erature of the e.g. thermal			Progre	ess of react		→
Activation energy	The energy react.	The products are at a higher energy than the reacta This means that energy has been transferred from							
Section 2a Reaction	profiles – Exc	othermic reaction				Hence the s			
		↑		tempera			5	5	
The products are at a lower energy than the reactants. This means that energy has been transferred to the Energy				Section 3 Bond breaking and making (HT) Breaking bonds Energy is needed to break bonds					
		Energy		Forming t		(Endother Energy is (Exotherm	s released w	vhen bon	ds are fo
surroundings. Hence surroundings gets he and the temperature r	gets hotter		Products	H—- H—-	н + н	0—0 -	→ _H	∧_н	+ _ С
L		Progress of I	reaction	bonds		oxygen read hydrogen a	and oxygen		

at a higher energy than the reactants. energy has been transferred from the ence the surroundings gets **colder** and the eases.

Breaking bonds	Energy is needed to break bonds (Endothermic).				
Forming bonds	Energy is released when bonds are formed (Exothermic).				

xygen react together to make water. The hydrogen and oxygen have to be broken so that new bonds can form between hydrogen and oxygen.

KNOWLEDGE

Chemistry Topic 7 Energy changes

ORGANISER

Section 4 Bond energy calculations (HT)				Common Bond er	nergies KJ/mol
You can calculate the overall energy change in a chemical re will be given to you in an exam, hence you don't need to revise	C-C	347			
Equation: Bond energy = energy required to break bonds in the reactants – energy required to make bonds in the products					358
 Use bond energies to estimate the overall energy change for the reaction: 	Figure 1			C-H	413
$H_2 + Cl_2 \rightarrow 2HCl$	ţ			C-N	286
H−H + CI−CI → H−CI + H-CI Bonds broken - Bonds made		H-H + CI-CI	679	C-Cl	346
1 H – H 436 2H – Cl 2x432 1 Cl – Cl 243 + 436 + 243 – (2 x 432)	Energy	-185	864	CI-CI	243
679 − 864 ΔH = -185 KJ/mol		KJ/mol	2 H-Cl	H-CI	432
		Progress of r	Progress of reaction		464
Figure 1 shows the energy profile diagram for the reaction I	H-N	391			
679 KJ/mol of energy was taken in when the reactants bonds where broken , 864 KJ/mol of energy was					436
released when the products bonds where formed, hence the overall energy of the reaction was -185 KJ/mol.					498
Because the energy change ΔH is negative , energy was tran reaction.	N≡N	945			

KNOWLEDGE

Chemistry Topic 7 Energy changes (Triple)

ORGANISER

			Castion E. Dall				
Section 5a Chemical	cells and batteries	Key points (Triple)	Section 5c Batteries				
Metals		e electrons and form positive ions. tendency to lose electrons, the metal.	Primary Cells	Cannot be recharged. The dry cells with electrodes made of zinc and carbon are non- rechargeable. Once one of the reactants runs out the cell stops working and should be			
Electrical cell	by a wire, the	re dipped in a salt solution and joined more reactive metal donates less reactive metal forming a simple	Secondary Cells	disposed of in a recycling centre. Are rechargeable, in the recharging process the battery is connected to a power supply that reverses the reactions that occur at each			
Cells with high Voltage	Cells with high Voltage The greater the difference in reactivity between the two metals, the higher the voltage produced by the electrical cell.		electrode, regenerating the original reactants.				
Battery	A battery is made up of two or more cells joined to increase the voltage produced.		Hydrogen-powered	vehicles combustion engines. $2H_2 + O_2 \rightarrow 2H_2O$			
Electric current Electric current is the flow of electrons		Advantages Disadvantages • Safety and storage • Safety and storage • Burns well and produces no • Supply of hydrogen is					
Section 5b Using Voltage readings in simple cells to predict reactivity.			 Pollutants. Could reduce human impact on electrolysis which requires 				
A simple experiment investigating the voltage produced by different metals paired with other metals can give you a measure of reactivity.		global warming a produced					
Electrode A Electro	de B Voltage in V	(V)	More efficient fue				
Copper Copp	er 0.00	Electrode A	These cells are fed and oxygen and				
Copper Iror	n 0.78		The energy release to electrical energy	d is transferred H2 - 4 2			
Copper Magnes	sium 2.71	Salt solution	the vehicle.	e. e.			
Copper Tin	0.48		At the negative electron $2H_2 + 4OH^- \rightarrow 4H_2$	$_{2}O + 4e^{-}$			
reactivity. The gree electrode B is compared	ater the voltage	used to list the metals in order of the more reactive the metal in these results show that the order of Copper, tin, iron and magnesium .	At the positive elect $O_2 + 2H_2O + 4e^-$ Overall equation $2H_2 + O_2 \rightarrow 2H_2O$				
reactivity norm least to	most reactive is.			Liousiyio			