KNOWLEDGE

Chemistry Topic 9 Crude oil and fuels

ORGANISER

Section 1: Key	terms	Section 2: A	lkanes		
Crude oil	A mixture of hydrocarbons formed over millions of years from dead plankton subjected to high pressure & temperature .	of an alkane	is $C_n H_{2n+2}$ The alka	il are alkanes. The general formula nes are saturated hydrocarbons	
Hydrocarbon	A molecule containing hydrogen and carbon atoms only.	with all the ca		being single covalent bonds.	
Alkane	A hydrocarbon containing only single bonds . Follows the formula C_nH_{2n+2} .		Prefix Meth-	Number of carbon atoms 1 2	
Fractional distillation	The method of separating hydrocarbons based on their boiling point .		Eth- Prop-	3	
Fraction	A fraction contains similar length hydrocarbons with a small range of boiling points.		But-	4 H H	
Intermolecular force	Weak forces of attraction that exist between molecules.		н—с⊣н	н—с—с—н	
Boiling point	The temperature at which a liquid turns into a gas .		н́	н́н́	
Viscosity	The ability of a substance to flow .		Methane CH ₄	Ethane C ₂ H ₆	
Volatility	The tendency to turn into a gas		н н н	H H H H	
Flammability	How easily a substance burns or ignites .	н—	-с-с-с-н		
Combustion	A reaction between a fuel and oxygen that produces heat.				
Complete combustion	Combustion in plenty of oxygen . Complete combustion of a hydrocarbon will produce carbon dioxide and water .		H H H Propane C ₃ H ₈	H H H H Butane C ₄ H ₁₀	
Incomplete combustion	Combustion in inadequate oxygen . Incomplete combustion of a hydrocarbon produces water and carbon monoxide or carbon particulates.	Boiling			
Alkene	A hydrocarbon containing at least one double bond . They follow the formula C_nH_{2n} . Used to make polymers .		which don't require r	ntermolecular forces of attraction nuch energy to overcome. are more viscous because they	
Bromine water	A chemical that is brown/orange in colour. If added to an alkene it reacts and changes to colourless . Alkanes do not react hence do not produce a change in colour.	,	together more making	ermolecular forces and stick them thicker liquids. es are more volatile than larger	
Cracking	The process by which less-useful long-chain hydrocarbons are split to produce an alkane and an alkene.	Volatility	chain alkanes becaus attraction between th	e they have weaker forces of heir molecules than longer chain ses with chain length because	
Catalyst	A chemical that speeds up the rate of reaction without being used up itself.	Flammability			

KNOWLEDGE

Chemistry Topic 9 Crude oil and fuels

To water pump

Limewater

turns milky

Section 4: Fractional distillation of oil

Crude oil is separated into hydrocarbons with similar boiling points. Each hydrocarbon fraction contains molecules with similar numbers of carbons.

- The crude oil is **heated** to about 370°C and fed into bottom of a fractionating column.
- The fractionating column is hottest at the bottom & coolest at the top.
- Most fractions evaporate and become vapours. The residue (heavier long chain molecules) doesn't boil & flows to the bottom of the column.
- Hot vapours (shorter chain molecules) rise up the column & cool down.
- When the vapours **cool** to their **boiling point** they **condense** and flow out of the column.
- Those with **lower boiling points rise further** before cooling down.
- Refinery gases do not cool down to their boiling point so **remain as** gases.
- Large chain fractions are cracked producing smaller more useful fuels.

Section 5: Burning hydrocarbon fuels

Obtained from the **fractional distillation and cracking** of crude oil. The combustion of hydrocarbon **fuels releases energy**.

During combustion, the carbon and hydrogen in the fuels are **oxidised. Complete combustion** – alkanes will burn in oxygen to produce carbon

dioxide and water. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

Incomplete combustion – when there is not enough oxygen, carbon monoxide and carbon particulates also form.

You can **test the products** given off when a **hydrocarbon burns** using the apparatus opposite. As well as using anhydrous copper sulfate, you can also use **blue cobalt chloride paper** which turns **pink** when water is present.

Section 6: Cracking

Cracking – breaks long chain hydrocarbons into more useful shorter chain hydrocarbons. Cracking can be done by either catalytic cracking or steam cracking. Cracking can also be described as a **thermal decomposition**. Method Process Temperature

Latalytic Cracking passed over a not zeolite catalyst		500°C.		
Steam Cracking mixed with steam and heated to a very high temperature.		850°C.		
e.g. Cracking of Decane. $C_{10}H_{22} \rightarrow C_5H_{12} + C_3H_6 + C_2H_4$				
Mineral wool soaked in paraffin	Zeolite Catalyst			