Section 1: Key terms (triple)

Reflect	The wave bounces off a surface; the angle of incidence is equal to the angle of reflection.
Refract	The wave changes direction when it enters a medium of different density where it has a different speed.
Normal	The normal at a point on a mirror is a line drawn perpendicular to the mirror at the point of incidence.
Law of reflection	The law of reflection states that the angle of incidence the angle of reflection.
Plane mirror	A mirror with a flat (planar) reflective surface.
Real image	An image that can seen on a screen because it is formed by focussing light rays onto the screen.
Virtual image	An image formed at a place where the light rays appear to come from after they've been reflected (or refracted.)
Specular reflection	Reflection from a smooth surface, parallel rays are reflected in a single direction.
Diffuse reflection scatection from a rough surface, parallel rays are scattered in different directions.	
Transparent	A transparent object lets all light that enters it pass through (and doesn't scatter or refract the light.)
Translucent	A translucent object lets light pass though but it scatters (or refracts) the light inside it.
Convex lens	Focuses parallel rays to a point called the principal focus.
Principal focus	The point where parallel rays are focussed to.
Concave lens	A concave lens (or diverging lens) makes parallel rays spread out as if they had come from a point called the principal focus.
Magnification	The image height \div the object height.
Focal length	Distance from the centre of a lens to the point where light rays parallel to the principal axis are focussed.
Magnifying lens	A convex lens used to form a virtual image of an object.

Section 2: Reflection of light (triple)

Law of reflection

The angle of incidence (i), is the angle between the incident ray and the normal.
The angle of reflection (r), is the angle between the reflected ray and the normal.
The Law of reflection states that:
the angle of incidence $=$ the angle of reflection.

The image formed by a plane mirror is virtual, upright and laterally inverted (back to front but not upside down.)

KNOWLEDGE

Physics Topic P14 Waves, electromagnetism
\& space - Light (triple)

Section 2: Reflection of light (continued)
Reflection from a smooth surface is called Specular reflection because reflection occurs in a single direction

Specular reflection without scattering.

Reflection from a rough surface is called diffuse reflection because the light is scattered. Incident rays Reflected rays
Diffuse reflection

Section 2: Refraction of light (triple)

Refraction is a change in direction of waves when they travel across a boundary from one medium to another.

When light enters a more dense medium, the refracted wave slows down and bends towards the normal.

> When light enters a less dense medium, the refracted wave speeds up and bends away from the normal.

When a light enters a more dense medium (air into glass) the angle of refraction r_{1} is less than the angle of incidence \mathbf{i}_{1}. When light enters a less dense medium (from glass into air,) the angle of refraction $\mathbf{r}_{\mathbf{2}}$ is more than the angle of incidence \mathbf{i}_{2}.

Section 4: Lenses (triple)

A convex lens focuses parallel rays to a point called the principal focus (or focal point).

The distance from the centre of the lens to the principal focus is called the focal length. The image can be either real or virtual. Used as a magnifying glass and in a camera to form a clear image of a distant object.
A concave lens makes parallel rays spread out as if they had come from a point called the principal focus (or focal
point). The image produced is always virtual.

A concave lens is used to correct short sight.
Magnification $=\frac{\text { image height }}{\text { object height }}$
Concave (diverging lens)

Magnification

As magnification is a ratio, there are no units.

Section 4: Using lenses (triple)
A real image is formed by a convex lens if the object is further away than the principal focus f of the lens.

To locate the image and determine its nature:

- Ray 1 is parallel to axis and is refracted through f.
- Ray 2 passes straight through the centre of the lens.
- Ray 3 passes through \mathbf{f} and is refracted parallel to the axis.

When an object is placed between a convex lens and its principal focus f, the image formed is virtual, upright, magnified and on the same side of the lens as the object.

> | $\begin{array}{l}\text { Virtual } \\ \text { image } \\ \text { (convex } \\ \text { lens) }\end{array}$ |
| :--- |

Virtual
image (concave lens)

The image formed by a concave lens is always virtual, upright and smaller than the object.

