Maths Grade 2 Knowledge Organiser

2.2 Multiply \& divide by $10,100,1000$

- By moving the decimal point

To multiply by 10 move the decimal point ONE place RIGHT
e.g. $3.4 \times 10=34$

To divide by 10 move the dp ONE place LEFT
e.g. $3.4 \times 10=0.34$

- By moving the digits

To multiply by 10 move the dp ONE place RIGHT
e.g.

2.1 Rounding decimals

- Look at the digit required
- Look at the first digit NOT required

e.g. To round 5

43 to 1 dp

Answer 5.4
digit NOT required

leave this alone
Is this 5 or more?

- Fractions

They must have the same denominator

	$\frac{5}{6}$	$\frac{7}{12}$	$\frac{2}{3}$	$\frac{3}{4}$
e.g.	$\frac{1}{6}$	\downarrow	\downarrow	\downarrow
	\downarrow	\downarrow	\downarrow	$\frac{10}{12}$
	$\frac{7}{12}$	$\frac{9}{12}$	$\frac{8}{12}$	

Now the fractions can be ordered

- Decimals

Give them all the same number of digits
e.g.
$0.3,0.304$
0.32,
0.33

0.320

0.330

Now the decimals can be ordered

- Convert between fractions \& decimals

Decimals to fractions

Fractions to decimals - by changing
e.g. $\frac{4}{5}=\frac{8}{10}=0.8$
e.g. $\frac{9}{12}=\frac{3}{4}=0.75$

Fractions to decimals - by dividing
e.g. $\frac{3}{8}=3 \div 8=0.375$

2.3 Order of operations

Bracket

Indices

Divide
Multiply $\}$ Do these in the order they appear
$\left.\begin{array}{l}\text { Add } \\ \text { Subtract }\end{array}\right\}$ Do these in the order they appear
e.g. $3+\underset{4}{4 \times 6}-5=22$
first

2.4 Powers and roots

4^{2} - we say 4 squared or the square of 4

- It means $4 \times 4=16$
2^{3} - we say 3 cubed or the cube of 3
- It means $2 \times 2 \times 2=8$
3^{4} - we say 3 to the power of 4
- It means $3 \times 3 \times 3 \times 3=81$

The inverse operation for 'power' is 'root'
$\sqrt{16}=4$
$\sqrt[3]{8}=2$
$\sqrt[4]{81}=3$
There are keys on the calculator to all of these

2.5 Simplify fraction

See what number divides exactly into both the numerator and denominator
e.g. $\frac{8}{12} \stackrel{\div 4}{\rightarrow 4} \rightarrow \frac{2}{3}$
e.g. $\underset{-5}{\frac{15}{40}} \rightarrow \frac{3}{8}$

2.5 Simplify Ratio

- How it is written

Yellow : Red
$=2: 6$

- How it can be simplified

Yellow : Red
$=1: 3$

- Simplify by cancelling

Examples
$2^{2}: 6^{22}=1: 3$
$10^{\div 5}: 15^{\div 5}=2: 3$

2.6 Fractions

Add \& subtract with same denominator
e.g.
$\frac{2}{3}+\frac{2}{3}=\frac{4}{3}=1 \frac{1}{3}$

Multiply is just repeated addition
e.g.
$2 \times \frac{2}{3}=\frac{2}{3}+\frac{2}{3}=\frac{4}{3}=1 \frac{1}{3}$

2.7 Fraction of quantity with calculator

- $\frac{4}{5}$ means $\div 5 \times 4$
e.g. To find $\frac{4}{5}$ of $£ 40$

$$
£ 40 \div 5 \times 4=£ 40
$$

E7 Percentage of quantity - NO calculator

2.7 Percentage of quantity-with calculator

- Change the percentage to a decima
e.g. 8% of $£ 240$
$12 \frac{1}{2} \%$ of 80 kg
$=0.08 \times 240$
$=0.125 \times 80$
$=\underline{£ 19.20}$
$=10 \mathrm{~kg}$
80% of 52 litres
$=0.8 \times 52$
$=41.6$ litres

2.8 Decimals

Add \& subtract- Line up the decimal points
Multiply - take out decimal point Multiply
Put decimal point back in
e.g. 3.2×0.4
> 32×4 (remove decimal points)
>128 (multiply)
> 1.28 (put decimal point back in-2 decimal places)

Divide - make divisor into a whole number Multiply both numbers
e.g. $2.84 \div 0.2$ (multiply both numbers by 10)
$>28.4 \div 2$
> 14.1

2.9 Order negative numbers

1	1	1	1	1	1	1
-3	-2	-1	0	1	2	3

$2>-2 \rightarrow$ We say 2 is bigger than -2
$-1<3 \longrightarrow$ We say -1 is less than 3

E9 Add \& Subtract Negative numbers

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- $8+-2$ is the same as $8-2=6$
- $8-+2$ is the same as $8-2=6$
- $8--2$ is the same as $8+2=10$

2.10 Number patterns

Look to see how numbers are connected

- Multiples

Multiples of 6 are: $6,12,18,24,30 \ldots$

- Factors

Factors of 6 are: 1, 6, 3, 2

- Prime numbers

Prime numbers have only TWO factors $2,3,5,7,11,13,17,29,31,37$

- Sequences
$1,4,9,16,25,36 \ldots$ are all square numbers
$1,8,27,64,125 \ldots$ are all cube numbers
$1,4,7,10,13,16 \ldots$ increase b 3 each time

2.11 Manipulate expressions

Only like terms can be added \& subtracted e.g. $a+2 b$ cannot be added
$a^{2}-2 a$ cannot be subtracted
$a+2 a=3 a$
$5 a^{2}-2 a^{2}=3 a^{2}$
Terms can be simplified when multiplying
e.g. $a \times b=a b$
$2 a \times 3 a=6 a^{2}$

E2.12 Solve equations - by balancing

e.g. $2 x-3=7$ (add 3 to each side)
$2 x=10$ (divide both sides by 2)
$x=5$
e.g. $\underline{x}+1=5$ (subtract 1 from each side)

2
$\frac{x}{2}=4$ (multiply both sides by 2)
$x=8$

2. 13 Symmetries

- Order of Line Symmetry
this is the number of times a shape can be folded so that one side falls exactly onto the other side

This shape has line symmetry ORDER 4

- Order of Rotational Symmetry
this is the number of times a shape falls into its outline in one complete turn

A parallelogram has rotational symmetry order 2

Angles of a triangle-add up to 180°

Angles of a quadrilateral add up to 360°

2.15 Transform Shapes

- Reflection

A shape flipped over a line

- Rotation

A shape turned round a point

- Translation

A shape moved along a line

- Tessellation

Shapes are joined without gaps or overlapping e.g.

2.16 2D drawings of 3D shapes

- Isometric drawing

Never join the dots horizontally

- Nets

2.17 Read \& interpret conversion graphs

e.g. To convert kg and pounds

- Draw lines on to take readings
- Read the scale carefully

e.g. Read \& interpret timetables

Station	Time of leaving
Peterborough	0844
Huntingdon	0901
St Neots	0908
Sandy	0915
Biggleswade	0919
Arlesey	0924

e.g. Time taken to travel from Peterbrough to Sandy 0844

0900

16 min $+15 \min =31$ min

2.18 Units of measure

- Metric units

Length	Weight	Capacity
$10 \mathrm{~mm}=1 \mathrm{~cm}$	$1000 \mathrm{~g}=1 \mathrm{~kg}$	$1000 \mathrm{ml}=1$ litre
$100 \mathrm{~cm}=1 \mathrm{~m}$		$10 \mathrm{ml}=1$ centilitre
$1000 \mathrm{~m}=1 \mathrm{~km}$		

- Imperial units

Length	Weight	Capacity
1 inch $=2.5 \mathrm{~cm}$	2.2 pounds $\approx 1 \mathrm{~kg}$	1gallon ≈ 4.5 litres
1 foot $=30 \mathrm{~cm}$		
1 mile $\approx 1.6 \mathrm{~km}$		

2.19 Area and perimeter of rectangle

Area is the amount of space inside the outline of a shape
Perimeter is the length of the outline of a shape

- Area of rectangle $=$ length \times width

Area of rectangle $=1 \times w$

$$
\begin{aligned}
& =8 \times 3 \\
& =24 \mathrm{~cm}^{2}
\end{aligned}
$$

- Perimeter of the rectangle

Perimeter $=3+8+3+8$ OR $2 \times 3+2 \times 8$
22 cm

2.20 Probability

- Calculate probability
$P($ event $)=$ No. of outcomes which give the event Total number of outcomes
- Probability of an event NOT happening
If $p($ event $)=p$
$P($ event $N O T$ happening $)=1-p$
e.g. If p (rain) $=0.3$
$p($ no rain $=1-0.3=0.7$

2.21 Averages and Range

Mode - most frequent measure
Median - middle measure (put them in order)
Mean - total of measures \div no. of measures
Range - Highest minus lowest measure

- Range measures how spread out the measures are
- Mode, median \& mean gives an average
- The range and one of the averages is used to compare distributions

2.22 Find all possible outcomes

Outcomes can be presented:

- In a list
- In a table or sample space

Example of a sample space

To show all possible outcomes from spinning a spinner and rolling a dice

		Dice					
	+	1	2	3	4	5	6
$\begin{aligned} & \text { d } \\ & \text { = } \\ & \text { in } \end{aligned}$	1	2	3	4	5	6	7
	2	3					
	3	4					
	4	5					

2.23 Interpret pie charts

- Here we are not told how many people are in the survey
- We can therefore only comment on proportion by comparing the sizes of sectors in each pie chart
e.g. there is a larger proportion of the population under 15 in Ireland than Greece

It does not mean there are more people

2.23 Construct a pie chart

Transport	Frequency	Angle
Car	13×9	117°
Bus	4×9	36°
Walk	15×9	135
Cycle	8×9	72

Total frequency $=40$
$360^{\circ} \div 40=9^{\circ}$ per person

