Physics Topic P8
Forces in balance

Section 1: Key terms

Section 1: Key terms	
Scalar	A quantity with magnitude (size) only, e.g. speed, distance, time, area, volume.
Vector	A quantity that has both magnitude (size) and direction, e.g. all forces, displacement, velocity, weight, momentum.
Distance	How much ground an object has covered during its motion (scalar).
Displacement	Displacement is distance in a given direction (vector).
Magnitude	The value of a force in newtons.
Friction	The force opposing the relative motion of two solid surfaces in contact.
Contact force	Force between objects that are touching e.g. friction, air resistance.
Non-contact force	Force that acts on things not touching e.g. gravitational force, magnetic force.
Balanced forces	When forces are equal and opposite each other, also known as equilibrium.
Newton	Unit force is measured in.
Weight	The force of gravity acting on an object's mass. Measured using a newtonmeter.
Centre of mass	A point in the middle of an object where all its mass acts.
Resultant force	The overall force once all the forces have been considered.
Work done	Work is done when an object is moved through a a distance. When work is done against friction there is a temperature rise.
Newton's first	either: 1. Remain still l. Keep moving with the same velocity
law	

Section 2: Types of forces			
Force	Between	Contact or non-contact	Example
Friction	Two moving surfaces	Contact	Brakes
Upthrust	An object \& water	Contact	Boat
Reaction	Two stationary objects	Contact	Book on shelf
Air resistance	 air	Contact	Plane
Weight	Two masses	Non-contact	You and the earth
Tension	Two ends of an elastic material	Contact	Spring
Magnetic	 magnetic materials	Non-contact	Magnet picking up a nail

Section 3: Resultant forces

If the resultant force on an object is zero, then the object stays at rest or at the same speed and direction
If the resultant force is greater than zero, the speed or direction of the object will change.
If two forces act on an object along the same line:
the resultant force is their sum if the forces act in the same direction. the resultant force is their difference if the forces act in opposite directions.

A free-body force diagram of an object shows the forces acting on it Each force is shown on the diagram by a vector (an arrow pointing in direction of the force.)

Free body force diagram (HT) showing forces in opposite directions.

Section 4: Centre of mass

Point at which mass of an object appears to be concentrated is known as its centre of mass When an object is freely suspended, it comes to rest with its centre of mass directly below the point of suspension.
The centre of
mass of a
regular shape is at the centre where the axes of symmetry meet.)

Section 5: The parallelogram of forces (HT The parallelogram of forces is a scale diagram of two force vectors which is used to find the resultant of two forces that are not parallel (don't act along the same line)

The resulting displacement (c) is measured using a ruler on a scale diagram or calculated using
Pythagoras $\quad c=\sqrt{a^{2}+b^{2}}$

Physics Topic P8
Forces in balance (Triple)

Section 8: Levers and gears (Triple)

Levers use the idea of balanced moments to make it easier for us to do work. Levers increase the distance from the pivot at which the force is applied. Levers act as force multipliers as less force is required to get the same moment by increasing the distance.
Gears are like levers because they can multiply the effect of a turning force
Gears are wheels with toothed edges that rotate on an axle or shaft. When one gear turns, it causes the other gear to rotate in the opposite direction.

If you want to increase the moment of a turning force, you need a small gear wheel to drive a large gear wheel. We see this in cars.

When a car is in low gear, a small gear wheel turns (effort) a large gear wheel (load.) The load force is larger than the effort force hence it is acting as a

Changing gears (Triple)

Low gear to high gear A low gear ratio gives low speed and a high turning effect. A high gear ratio gives high Low gear to high gear speed and a low turning effect.
Section 9: Moments and equilibrium (Triple)
If an object at rest doesn't turn, the sum of the anticlockwise moments about any point $=$ the sum of the clockwise moments about any point. This is the principle of moments.

Applying the principle of moments gives the equation

$$
w_{1} d_{1}=w_{2} d_{2}
$$

$\mathrm{W}=$ Weight in newtons, N d = distance in metres, m

