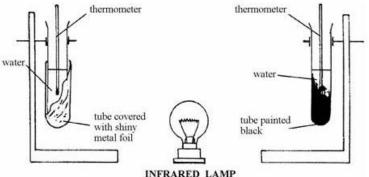
KNOWLEDGE

Physics Topic P2 Energy transfer by heating

Section 1: I		Section 3: Specific he		
Thermal conductivity	A measure of how good something is at conducting .	Putting the same amount of heat into some materials gives a bigger temperature rise than in other materials. The specific heat capacity of a substance is the energy needed to raise the temperature of 1kg of a material by 1°C .		
(Thermal)	Thermal insulators reduce energy transfers (prevent heat loss to	three factors:		
Insulator	surroundings and hence have a low thermal conductivity)	Amount of energy supplied to it	Specific heat capacity increases with temperature .	
Thermal Conductor	Good at transferring heat energy.	Mass of the substance	The greater the mass the more slowly its temperature increases when its heated.	
Specific heat capacity	The specific heat capacity of a substance is the amount of energy needed to change the temperature of 1Kg of the substance by 1°C . Its units are J/Kg/°C	What the substance is	Metals tend to have lower specific heat capacities . Water has a high specific heat capacity . Hence it takes less energy to raise the temperature of a block of aluminium metal by 1°C than it does to raise the same amount of water by 1°C.	
Joulemeter	Energy meter (measures energy supplied)	Measuring specific he	eat capacity A metal block of known mass is heated. A joulemeter is used to measure the energy	
Section 2: Energy transfer by conduction		supplied ΔE and a thermometer to measure the temperature rise $\Delta \theta$.		
The higher the Thermal conductivity of a material the higher the rate of energy transfer by conduction across the material.		Joule- meter	The measurements are then inserted into the equation and used to calculate the specific heat	
	Metals are the best conductors of energy, Copper is a better conductor than steel.	Power supply Heater Material block	capacity: $\Delta E = m \times c \times \Delta \Theta$	
	Non-metal material (like wool and fibreglass) are the best insulators .		Insulation Energy (J) Specific heat Change in	
Factors affecting insulation			Mass (kg) Capacity temperature (J °C ⁻¹ kg ⁻¹) (°C)	
Thickness of material	The thicker the material the better the insulation.		ectricity at night (off peak hours) to heat special bricks (which at capacity). The bricks store lots of energy and take time to heat	
Thermal conductivity	The lower the thermal conductivity the better the insulator.	up and cool down. Hen	and cool down slowly when it is off.	

KNOWLEDGE

Physics Topic P2 🕾 Energy transfer by heating


Section 4: Heating and insulating buildings Homes are heated by electric or gas heaters, oil or gas central heating systems or solid fuels in stoves or fireplaces. A **poorly insulated house loses** more energy and so costs more to heat. It also means that more pollution, particularly carbon dioxide is released into the environment. The rate of energy transfer can be reduced by: How to prevent heat loss from a house surfaces. Contains fibreglass which air, traps reducing Loft insulation Loft convection which is a Insulation good insulator. infrared radiation. Cavity wall Traps air pockets in gaps Double which is a good insulator insulation thermometer Glazina Cavity Traps air in gaps wall Double glazed insulation between glass which is a windows good insulator. Aluminium water foil behind Aluminium foil Reflects radiation. radiators behind radiators Thicker bricks have a External walls tube covered lower thermal with shiny with thicker bricks metal foil conductivity. Section 5: Infrared radiation Key terms (Triple only) Transverse waves that travel at 300,000,000 m/s. Includes radio, Electromagnetic radiation microwave, infrared, visible, Ultraviolet, X-ray and gamma waves. An electromagnetic wave. Emitted Infrared radiation by warm objects. Also known as heat or thermal radiation. A body that **absorbs all the radiation** radiation than it emits. Black body that hits it. The radiation emitted by a perfect Black body radiation black body contribute the dases that to greenhouse effect by absorbing Greenhouse gases infrared radiation

Section 6: Infrared radiation (Triple only)

The Sun emits all types of electromagnetic radiation. Infrared radiation consists purely of electromagnetic waves of a certain range of frequencies. The **hotter** an object is, the **more infrared** radiation it emits in a given time.

What happens to infrared waves when they strike different

Dark matt surfaces absorb infrared radiation much better than light glossy surfaces, **silvered surfaces reflect** nearly all heat radiation falling on them. Dark matt surfaces also emit more

In the experiment above, the infrared lamp **radiates energy** to the test tubes. The **black painted tube absorbs** most of the energy (and its temperature increases faster) whereas the shiny foil reflected most of the energy that reached it.

Absorption and emission of infrared radiation

The **temperature** of an object **will increase** if it **absorbs more**

The **Earth's temperature depends** on a lot of factors like the absorption of infrared radiation. Greenhouse gases in the atmosphere (CO₂, CH₄ & H₂O) **absorb infrared radiation** preventing it escaping into space. This process is known as the Greenhouse effect and makes the Earth warmer than it would be if these gases were not present in the atmosphere.