### KNOWLEDGE



## Physics Topic P15 Waves, electromagnetism

& space – Electromagnetism

ORGANISER

| Section 1: El                                                                                                                                                                                      | ectromagnetism Key Terms                                                                                                                                                          | Section 2: Magnetic fields (continued)                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pole                                                                                                                                                                                               | The places on a magnet where the magnetic forces are strongest.                                                                                                                   |                                                                                                                                                                                                                                                                                                  |
| Magnetic Field                                                                                                                                                                                     | The <b>area</b> around a magnet where a <b>force acts</b> on another magnet or magnetic material.                                                                                 | Like poles repel.                                                                                                                                                                                                                                                                                |
| Repel                                                                                                                                                                                              | Occurs when two <b>like poles</b> are brought close together.<br>The magnets <b>push apart</b> .                                                                                  | When <b>two north poles</b> (or two south poles) are placed                                                                                                                                                                                                                                      |
| Attract                                                                                                                                                                                            | Occurs when two <b>opposite poles</b> are brought close together. The magnets <b>move together</b> .                                                                              | together, they will <b>repel</b> each other.                                                                                                                                                                                                                                                     |
| Permanent<br>magnet                                                                                                                                                                                | A magnet that produces its <b>own magnetic field</b> .                                                                                                                            | 111111                                                                                                                                                                                                                                                                                           |
| Induced<br>magnet                                                                                                                                                                                  | A magnetic material that <b>becomes a magnet</b> when it is placed in a <b>magnetic field</b> . When <b>removed</b> from the <b>field</b> it <b>quickly loses its magnetism</b> . | Unlike poles attract.<br>When a north pole and a                                                                                                                                                                                                                                                 |
| Magnetic<br>material                                                                                                                                                                               | There are four magnetic materials: <b>iron</b> , <b>steel</b> , <b>cobalt</b> and <b>nickel</b> .                                                                                 | together, they will <b>attract</b> .                                                                                                                                                                                                                                                             |
| Compass                                                                                                                                                                                            | Compasses contain small bar magnets which <b>points</b> to the <b>north pole</b> of the <b>Earth's magnetic field</b> .                                                           | Attraction and repulsion                                                                                                                                                                                                                                                                         |
| Solenoid                                                                                                                                                                                           | A solenoid is a long <b>coil of wire</b> that produces a controlled magnetic field.                                                                                               | two magnetic poles are                                                                                                                                                                                                                                                                           |
| Electromagnet                                                                                                                                                                                      | A <b>solenoid containing an iron core</b> which increases its strength.                                                                                                           | forces.                                                                                                                                                                                                                                                                                          |
| Motor effect                                                                                                                                                                                       | The force produced between a conductor carrying a current within a magnetic field and the magnet                                                                                  | <b>Induced magnetism</b> is <b>magnetism</b> created in an <b>unmagnetised</b><br><b>magnetic material</b> when the material is <b>placed in a magnetic field</b> .                                                                                                                              |
|                                                                                                                                                                                                    | producing the field.                                                                                                                                                              | Steel is used instead of iron to make permanent magnets because                                                                                                                                                                                                                                  |
| Magnetic flux<br>density (HT)                                                                                                                                                                      | A measure of the strength of a magnetic field.                                                                                                                                    | The <b>Earth</b> behaves as if there is a                                                                                                                                                                                                                                                        |
| Section 2: Ma                                                                                                                                                                                      | agnetic fields                                                                                                                                                                    | bar magnet inside it. The                                                                                                                                                                                                                                                                        |
| The magnetic field lines<br>of a bar magnet curve<br>around from the north<br>pole of the bar magnet to<br>the south pole.<br>The field lines always go<br>from north to south and<br>never touch. |                                                                                                                                                                                   | geographic north pole is a <b>magnetic</b><br>south pole. A compass will point<br>towards geographical north and is<br>the north-seeking pole.<br>We know it is the core of the Earth<br>that is magnetic(not the whole thing)<br>because a compass at the north<br>pole points below your feet. |

## KNOWLEDGE



## Physics Topic P15 Waves, electromagnetism

& space – Electromagnetism

ORGANISER

| Section 3: Magnetic fields of electric currents                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                            |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| We can increase the strength of the magnetic<br>field by putting a <b>magnetic</b> (e.g. iron) <b>core</b> in<br>the <b>solenoid</b> (long coil of wire.) The magnetic<br>field in a <b>solenoid</b> is concentrated <b>inside the</b><br><b>coil in a uniform direction</b> , otherwise it acts<br>in the same way as a bar magnet.                                                                        | An electric motor is a device that makes use of the <b>motor</b><br>effect.<br>The following statements explain how the electric motor<br>creates a <b>turning force</b> : |  |  |  |
| Increasing current makes the magnetic field stronger Reversing the direction of the current reverses the magnetic field lines.                                                                                                                                                                                                                                                                              | <ul> <li>The power supply applies a <b>potential difference</b> across the coil</li> <li>A <b>current flows</b> through the coil</li> </ul>                                |  |  |  |
| Electromagnet An electromagnet is a <b>solenoid</b> that has an <b>iron core</b> . It consists of an <b>insulated wire</b> wrapped around an iron bar.                                                                                                                                                                                                                                                      | <ul> <li>A magnetic field is created around the coil</li> <li>The magnetic field interacts with the magnetic field</li> </ul>                                              |  |  |  |
| <ul> <li>Add an iron core</li> <li>Increasing the Increase the number of coils of wire</li> <li>Increase the current</li> </ul>                                                                                                                                                                                                                                                                             | <ul> <li>of the <b>permanent magnets</b></li> <li>This creates a force that makes the <b>coil spin</b>.</li> </ul>                                                         |  |  |  |
| solenoid • Move the magnetic material <b>closer</b> to the solenoid.                                                                                                                                                                                                                                                                                                                                        | Electric motor Simple<br>Electric Motor                                                                                                                                    |  |  |  |
| Section 4: The motor effect (HT)         When a conductor carrying a current is placed in a magnetic field,         the magnet producing the field and the conductor exert a force on         each other.         This can be used to create a motor.         • Fleming's left hand rule shows the various directions of actions in an electric motor.         • Fleming's         • Thumb direction of the | Split Ring<br>Commutator<br>Brushes                                                                                                                                        |  |  |  |
| <pre>left hand rule • First finger – direction of the magnetic field • Second finger – direction of</pre>                                                                                                                                                                                                                                                                                                   | Electric Current<br>Magnetic Field<br>Force (Motion)                                                                                                                       |  |  |  |
| the current in the wire.                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Increasing size</li> <li>Increasing strength of magnetic field</li> </ul>                                                                                         |  |  |  |
| the strength of a magnetic field. It is<br>the number of lines of magnetic flux in a                                                                                                                                                                                                                                                                                                                        | force by:<br>• Adding an <b>iron core</b> inside the <b>coil</b> .                                                                                                         |  |  |  |
| $ \begin{array}{c} \text{Flux} \\ \text{density} \end{array} \\ \begin{array}{c} \text{given area.} \\ \text{F=B x I x L} \\ \text{Force = magnetic flux density x current x} \end{array} \\ \begin{array}{c} \text{tesla, I} \\ \text{Current - amps, A} \\ \text{Length - metres, m} \end{array} \\ \end{array} $                                                                                         | Reverse<br>direction of<br>force by:<br>• Reverse <b>poles</b> of <b>magnet</b><br>• Reverse <b>current</b>                                                                |  |  |  |

#### **KNOWLEDGE**



# Physics Topic P15 Waves, electromagnetism

ORGANISER



