KNOWLEDGE

Chemistry Topic 15

ORGANISER

Section 1: Key 1	lerms	Section 2: Rusting			
Corrosion	Breakdown of materials due to chemical reactions.	For iron to rust, both air and oxygen are needed. Providing a barrier			
	It is a form of erosion .	between iron either a	ir (oxygen) and water protection	ts the iron from rusting.	
Rusting	The corrosion of iron.	Iron +	oxygen + water \rightarrow nydrated	I Iron(III)oxide	
Rust	Rust is hydrated Iron(III)oxide.	tube A tube B tube C iron nail anhydrous calcium chloride to absorb water tube C layer of oil boiled water (to remove air) water			
Sacrificial protection	An effective way to prevent rusting whereby a metal more reactive than iron is attached to or coated on an object.				
Galvanised	Iron or steel objects that have been protected from rusting by a thin layer of zinc metal at their surface.				
Oxidation	Loss of electrons.	Tube A tests to see if	Tube A tests to see if air alone makes iron rust. Tube B tests to see if water alone will make iron rust. Tube 3 tests to see if air and water will make iron		
Reduction	Gain of electrons.	alone will make iron r			
Reducing agent	Tend to get oxidised themselves (and hence reduce other species).	rust. Rusting is only observed in tube 3 illustrating that both air and water are needed for iron to rust. Sacrificial protection provides protection against rusting. The iron needs to be attached to a more reactive metal (galvanising it) for e.g. Zinc, magnesium or aluminium. The zinc is a stronger reducing agent than iron, so it has a stronger tendency to form positive ions by giving			
Alloy	A mixture of two or more elements, at least one of which is a metal. For e.g. Steel is an alloy of Iron and carbon.				
Bronze	Alloy of copper and tin.				
Brass	Alloy of copper and zinc.	way electrons. As the zinc atoms lose electrons they become oxidised			
Steels	Alloys of iron containing specific amounts of carbon and/or other metals.	(protecting the iron fr	protecting the iron from oxidation).		
Hydrated	A substance that contains water in its crystals.	Section 3: Useful al	lloys than nure motals because	the regular layers are	
Polymers	A substance made from very large molecules, polymers are made up of many repeating units.	Jistorted by differently sized atoms and hence cannot slide .			
Thermosoftening polymers	Soften and melt when they are heated. Can be remoulded.	iron which contains c athardness is controlled	arefully controlled quant	ities of carbon so that it's	
Thermosetting	Do not melt when they are heated. Cannot be	Steels	Properties	Uses	
polymers	remoulded.	High carbon steel	Very hard but brittle	Cutting tools (chisels)	
Composites	I wo materials combined to make a material with useful	Low carbon steel	Softer but easily shaped	Bodies of cars	
Ceramics	Materials made by heating clay to high temperatures	Stainless steel	Chromium-nickel steels resistant to corrosion	Cooking utensils, cutlery	
L	Imaking hard materials which are excellent insulators.	Nickel steel alloys	Resistant to stretching	Bridges, bicycle chains	

KNOWLEDGE

Chemistry Topic 15

ORGANISER

Section 4: The properties of polymers		Section 5: Glass, ceramic and composites		
The properties of polymers depends on what monomers they are made from the conditions under which they are made.		Glass	The most common form of glass is Soda Glass which is made by heating a mixture of sand (SiO_2) , limestone $(CaCO_3)$ and sodium carbonate (soda) at 1500°C. As it cools down the glass turns into a solid.	
Thermosoftening polymers	Soften or melt easily when heated because their intermolecular forces between the chains are weak .	XX		 Different types of glass exist depending on anothits of each of the reactants; borosilicate glass involves an extra compound- B₂O₃. Atoms arranged irregularly Transparent, brittle, high melting point, keeps its shape (not flexible) Wet clay is moulded into a desired shape, then heated in a furnace to 1000°C
Thermosetting polymers High density polyethene	Contain crosslinks (strong covalent bonds) between chains so they do		Ceramics	 Used in bricks, tiles, crockery, bathroom furniture Atoms are held together in a giant covalent lattice, generally in a regular pattern Hard but brittle, electrical insulators
	not soften or melt easily. Made using very high pressures and	cross-link	Composites	Materials made from two or more different materials, with one material acting as a binder for the other material, reinforcing it. Usually fibres or fragments of one material are held in a `matrix' (network of atoms) by the other.
	trace of oxygen. Polymer chains are randomly branched can't	branched		 Glass-ceramic composites are very hard and tough (not brittle) Fibreglass (polymer-ceramic) is a low density, tough, flexible material- e.g. used in kayaks Plywood, carbon fibres and cement are other examples
	pack closely together resulting in a low density.	$\neg \uparrow \uparrow$	Section 6: The The Haber proc nitrogen-based	Haber process ess is used to manufacture ammonia, which can be used to produce fertilisers. The raw materials are nitrogen (from the air) and
Low density polyethene	rade using a catalyst at 50°C and a slightly raised pressure. Made of	Straight chain	The nitrogen (from temperature of	d hatural gas, mainly methane). Id hydrogen are purified then passed over an iron catalyst at a high f 450°C and a high pressure (200 atmospheres) to make ammonia NH ₃ .
	straight chain molecules which are closely packed, stronger and more dense.		The reaction is r The ammonia is be separated fro	$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ eversible so ammonia can break down again into nitrogen and hydrogen. removed by cooling the gases so that the ammonia liquefies. It can then m the unreacted nitrogen and hydrogen gas.
			The unreacted n that they can rea	itrogen and hydrogen gases are recycled back into the reaction mixture so act again on the surface of the iron catalyst.

KNOWLEDGE

Chemistry Topic 15

ORGANISER

Section 7: The Haber process key terrms		Section 9:	The Haber compromise (HT)
Reversible reaction	A reaction in which the products can also form the reactants. Its symbol is \rightleftharpoons Shown as: A + B \rightleftharpoons C + D	Lowering the temperature slows down the rate of reaction, taking longer for ammonia to be produced.	
Exothermic	A reaction that transfers energy to the surroundings	Increasing the pressure means stronger, more expensive equipment is needed.	
Endothermic	A reaction that takes in energy from the surroundings	This increases the cost of producing ammonia. Hence a compromise is reached achieving an acceptable yield in a reasonable timeframe while keeping costs down. A pressure of 200 atmospheres and a temperature of 450°C.	
Equilibrium (HT)	Equilibrium is reached when the forward and backwards reactions occur at exactly the same rate. The amounts of reactants and products present remain constant. Requires a sealed container.		
Le Chatelier's Principle (HT)	When a change in conditions is introduced to a system at equilibrium, the position of equilibrium shifts so as to cancel out the change.	Section 10 Compounds agricultural	D: Fertilisers s of nitrogen, phosphorus and potassium are used as fertilisers to improve productivity. NPK fertilisers contain compounds of all three elements.
Section 8: Changing conditions in the Haber Process Equation for the Haber process: $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ ΔH is negative (exothermic in forwards direction).		NPK fertilisers	Nitrogen for cell growth and making proteins in plants Phosphorus needed to make DNA Potassium needed to make enzymes involved in respiration and photosynthesis.
Changing temperature	process (Δ H is negative). If the temperature is decreased , the equilibrium moves to the exothermic side and more NH ₃ is made.	Synthesis	Fertilisers are made by reacting an acid and base together e.g. Ammonia + nitric acid \rightarrow ammonium nitrate Ammonia + phosphoric acid \rightarrow ammonium phosphate Ammonia + sulphuric acid \rightarrow ammonium sulfate
Changing the pressure results in the equilibrium moving to the right hand side as there are less gas molecules.		Obtaining raw materials	Phosphates are obtained from phosphate rocks . Phosphate rocks all contains the phosphate ion PO_4^{3-} . The rocks are insoluble so cant be used directly as fertilisers , but react with acids to make the soluble phosphate compounds. Potassium chloride and potassium sulfate are obtained by mining and are soluble so can be directly used as fertilisers.
Catalvst	The iron catalyst speeds up the rate of the forwards and backwards reaction equally, hence it doesn't affect the		Nitric acid is required to make nitrate fertilisers (ammonia from the Haber process is oxidised to make nitric acid).
	yield of ammonia but does result in ammonia being produced quicker .	Phosphate rock fertilisers	Phosphate rock + nitric acid \rightarrow phosphoric acid + calcium nitrate Phosphate rock + sulphuric acid \rightarrow calcium phosphate + calcium sulfate Phosphate rock + phosphoric acid \rightarrow calcium phosphate