KNOWLEDGE

Physics Topic P6

ORGANISER

Section 1: Ke	ey Terms	Section 2: Density		Section 3: States of matter		
	How much mass a substance contains compared to its	The density of water is 1000k	g/m³ . Objects that have a	Everything around	d you is made up of matter and exists in one of	
Density	volume . Solids are usually dense because the particles	lower density than water will floa	it in water. Density can be	e three states . Solids , liquids and gases are made of particles, the physical arrangement of particles determines the state of a		
State of matter	The way in which the particles are arranged – solid, liquid or gas.	Calculated by measuring its ma		particular substan	ice.	
Change of state	When a substance changes from one state of matter to another (e.g. melting is the change from a solid to a liquid). Energy changes the state, not the temperature.	Measure volume of a cuboid = a x b x c	c	Kinetic theory of matter subliming		
Physical change	A change that can be reversed to recover the original material. E.g. a change of state.			000000	liquefying, melting	
Chemical change	A change that creates new products . It should not be reversed . E.g. a chemical reaction.	Volume of an irregular		freezing,		
Internal energy	The energy stored inside a system by the particles (atoms and molecules) that make up the system. Internal energy is the total kinetic energy and potential energy of all the particles.	object can be found by dropping in a liquid and measuring Displacement.		SOLID molecules held in fixed pattern but	LIQUID GAS molecules packed molecules widely close together in a separated, move	
Kinetic energy	Energy stored within moving objects (e.g. particles).	-	E	vibrating	free to move	
Potential energy	Energy stored in particles because of their position. The further apart particles are, the greater the potential energy.		liquid observer reads the	Changes of stat	re	
Specific heat capacity	The specific heat capacity of a substance is the amount of energy required to raise the temperature of one kilogram of the substance by one degree Celsius.		meniscus 120 100 100 100 100 100 100 100	Condensation	Process in which a gas turns into a liquid	
Temperature	The average kinetic energy of the particles.	When reading a meniscus the	80 - 80 -	Evaporation	Process in which a liquid turns into a gas	
Specific latent heat	The amount of energy required to change the state of one kilogram of the substance with no change in temperature.	of the meniscus .	view 40 cylinder	Freezing	Process in which a liquid turns into a solid	
Latent heat of fusion	Energy required to change state from solid to liquid .			Melting	Process in which a solid turns into a liquid	
Latent heat of vaporisation	Energy required to change state from liquid to vapour.	Calculation Equation	Symbol Units equation	Sublimation	Process in which a solid turns into a gas	
Gas Pressure	The force exerted by gases on surface as the particles collide with it. As temperature increases, gas pressure increases if the volume stays constant.	Density Density = <u>mass</u> volume	$ ho = \underline{m}$ Density = kg/m ³ v Mass = kg Volume = m ³]		

KNOWLEDGE

Physics Topic P6

ORGANISER

Se	ction 4: The Heat	ting Curve						Section 5: In	ternal energy
	1			Solid	Particles are closely packed, fixed and arranged in regular layers. As more energy is absorbed the kinetic energy and therefore the internal energy of the material increases.		 The energy stored by the particles of a substance is called its internal energy. This is caused by their individual motions and positions. The internal energy is the sum of a particles kinetic energy (due their individual motions relative to each other.) 		
(Boilir	ng Point	Boiling Liquid - Gas		Melting	Temperature doesn't change. Energy is used to weaken the forces between particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases. Particles are touching but no longer		 potential energy (due to their individual positions relative to each other.) Increasing the temperature increases the internal energy of a substance because: Increasing temperature increases kinetic energy If it melts or boils, the potential energy increases. 	
°)									
Temperature	Melting Point Solid	Melting Solid - Liquid Freezing			Liquid	arranged regularly. As more energy is al energy and therefore the material increase	They are able to move. bsorbed the kinetic e the internal energy of es.	Section 6: Specific latent heat The latent heat is the energy needed for a substance to change its state without changing its temperature.	
	50 ¹⁰				Evaporation	Temperature doesn't change. Energy is		Specific latent heat of fusion $L_f = \frac{\text{energy}}{max} E$	
						particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases.		Specific latent heat of vaporisation $L_v = \frac{\text{energy, E}}{\text{mass, m}}$	
					Boiling point	The temperature at which a liquid boils and		Section 7: Gas Pressure	
	Time (seconds)			Melting point	The temperature at which a solid melts and turns into a liquid.		Gas Pressure	Caused by the force exerted when particles collide with their container	
					Gas	Particles move rando is absorbed the part quickly and the temp	omly. As more energy icles move more perature increases.	Increasing temperature increases the	Gas molecules move faster and hit the surfaces with more force. The number of impacts between the gas molecules and the surface of the container increases,
St	ate	Particle arrangement	Distance between molecules	Streng	th of forces	Movement of particles	Internal energy	Motion of	The unpredictable motion of smoke particles is
Solid Fixed		Close together Strong			vibrates	Lowest internal energy	gases	this is called Brownian motion	
Liquid Not fixed		Not fixed	Touching but not arranged regularly			Move about	Higher than solids but lower than gases	and Volume (Triple only)	pressure is increased if the volume is decreased as the number of molecular impacts per second increases
Gas Not fixed		Not fixed	Far apart (insignificant)		eak ficant)	Move about freely	Highest internal energy.	Boyle's Law (Triple only)	Pressure (p) x Volume (V) = constant (Pa) (m^3)