

Physics Topic P6
Particles at Work - Molecules and matter

Section 1: Key Terms

Density

State of matter
How much mass a substance contains compared to its volume. Solids are usually dense because the particles are closely packed.
The way in which the particles are arranged - solid, liquid or gas.
Change of \quad When a substance changes from one state of matter state to another (e.g. melting is the change from a solid to a liquid). Energy changes the state, not the temperature.
Physical A change that can be reversed to recover the original material. E.g. a change of state.
Chemical change A change that creates new products. It should not be reversed. E.g. a chemical reaction
. The energy stored inside a system by the particles
Internal \quad (atoms and molecules) that make up the system. Interna
energy atoms and molecules) that make up the system. Interna energy is the total kinetic energy and potential energy of all the particles. \qquad
Kinetic energy Energy stored within moving objects (e.g. particles). Energy stored in particles because of their position. The further apart particles are, the greater the potential energy.
The specific heat capacity of a substance is the amount of energy required to raise the temperature of one kilogram of the substance by one degree Celsius.
capacity
The average kinetic energy of the particles.
The amount of energy required to change the state of one kilogram of the substance with no change in temperature.
heat
Latent heat of
fusion
Energy required to change state from solid to liquid.
Latent heat of
Energy required to change state from liquid to
vaporisation vapour.
The force exerted by gases on surface as the particles collide with it. As temperature increases, gas pressure increases if the volume stays constant.

Section 2: Density

The density of water is $\mathbf{1 0 0 0} \mathbf{k g} / \mathbf{m}^{\mathbf{3}}$. Objects that have a lower density than water will float in water. Density can be calculated by measuring its mass and volume.

Calculation

Equation

Density \quad Density = mass
 Density $=\frac{\text { mass }}{\text { volume }}$

Measure volume of a cuboid =axbxc

Volume of an irregular object can be found by dropping in a liquid and measuring Displacement.

When reading a meniscus the observer must read the bottom of the meniscus.
 quation Units $\rho=\underline{\mathrm{m}}$ Density $=\mathrm{kg} / \mathrm{m}^{3}$ Mass $=\mathrm{kg}$

Section 3: States of matter

Everything around you is made up of matter and exists in one of three states. Solids, liquids and gases are made of particles, the physical arrangement of particles determines the state of a particular substance

Kinetic theory of matter

molecules held fixed pattern b vibrating	
Changes of state	
Condensation	Process in which a gas turns into a liquid
Evaporation	Process in which a liquid turns into a gas
Freezing	Process in which a liquid turns into a solid
Melting	Process in which a solid turns into a liquid
Sublimation	Process in which a solid turns into a gas

Section 5: Internal energy
The energy stored by the particles of a substance is called its internal energy. This is caused by their individual motions and positions. The internal energy is the sum of a particles

- kinetic energy (due their individual motions relative to each other.)
potential energy (due to their individual positions relative to each other.)
Increasing the temperature increases the internal energy of a substance because
- Increasing temperature increases kinetic energy
- If it melts or boils, the potential energy increases.

Section 6: Specific latent heat
The latent heat is the energy needed for a substance to change its state without changing its temperature.
Specific latent heat of fusion $L_{f}=$ energy, E
mass, m
Specific latent heat of vaporisation $L_{v}=$ energy, E
mass, m

Section 7: Gas Pressure

Gas Pressure
Increasing temperature increases the gas pressure
Motion of gases

Gas pressure and Volume (Triple only) | (Triple oniy) | number of molecular impacts per seco |
| :--- | :--- |
| Boyle's Law | Pressure (p) \times Volume $(\mathrm{V})=$ constant |

Caused by the force exerted when particles collide with their container

Gas molecules move faster and hit the surfaces with more force. The number of impacts between the gas molecules and the surface of the container increases, molecules and the surface of the conta
so the total force of impact increases
The unpredictable motion of smoke particles is evidence of the random motion of gas molecules this is called Brownian motion
A fixed mass of gas at a constant temperature, the pressure is increased if the volume is decreased as the (Triple only) (Pa) $\quad\left(\mathrm{m}^{3}\right)$

